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Abstract

For three years, Sandia National Laboratories, Georgia Institute of Technology, and University 
of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric 
Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy 
resources (DER). This team researched, designed, built, and evaluated real-time VPP designs 
incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct 
a system capable of delivering reliable ancillary services, which have been traditionally provided 
by large power plants or other dedicated equipment. VPPs have become possible through an 
evolving landscape of state and national interconnection standards, which now require DER to 
include grid-support functionality and communications capabilities. This makes it possible for 
third party aggregators to provide a range of critical grid services such as voltage regulation, 
frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables 
renewable energy, demand response, and energy storage to participate in grid operations and 
provide grid services, (b) improves grid reliability by providing additional operating reserves for 
utilities, independent system operators (ISOs), and regional transmission organization (RTOs), 
and (c) removes renewable energy high-penetration barriers by providing services with 
photovoltaics and wind resources that traditionally were the jobs of thermal generators. 
Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid 
operations and may provide a robust pathway to high penetrations of renewables on US power 
systems. In this report, we design VPPs to provide a range of grid-support services and 
demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.
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1 INTRODUCTION

Virtual Power Plants convert variable renewable energy systems into monolithic dispatchable 
resources which provide electric utilities/ISOs/RTOs with mechanisms to perform frequency 
regulation and respond to grid disturbances more quickly and efficiently than large fossil power 
plants. This will increase renewable energy penetrations above 100% of peak load by eliminating 
the need for dedicated ancillary services because VPPs can dispatch identical services in 
accordance with utility and Independent System Operator (ISO)/Regional Transmission 
Organization (RTO) requirements. This capability is established with a resilient real-time 
controller interconnected to thousands of distributed energy resources (DERs). The VPP 
aggregator optimizes the individual behavior of distributed power electronics-based converters, 
small generators, and demand response units to dispatch frequency control reserves, thereby 
improving:

1. Grid operations by dispatching solar photovoltaic (PV) power at appropriate times to 
minimize the effects of displacing traditional generation—achieved with autonomous and 
commanded advanced grid functions which mitigate bulk system frequency deviations.

2. Grid reliability by providing additional operating reserves to utilities/ISOs/RTOs and 
distributing the controls to many DERs so single points of failure (e.g., large generators) 
no longer significantly disrupt the grid.

Real-time VPP optimization transforms variable renewable energy systems, demand response 
units, and other DER into dispatchable aggregations that provide system operators with 
mechanisms to provide grid services more quickly than large thermal plants. Due to the sheer 
number of DERs and their small sizes, it is not practical for bulk system operators to optimize 
and control individual DERs. In that regard, a VPP represents a framework for cohesive 
optimization and control of large numbers of small DERs which are then seen as a single entity 
by grid operators. VPPs provide grid support services using robust communications, robust 
control, and efficient optimization of large and diverse sets of DER; and ultimately, this 
functionality may eliminate the need for dedicated ancillary services entirely. 

The national and international trend of increasing renewable energy penetrations is a worst-case 
scenario for bulk system reliability as grid inertia and governor control are displaced and 
frequency deviations from RE variability are increasingly common1. Therefore, instituting 
frequency response reserves with DERs in accordance with utility, ISO/RTO, and NERC 
requirements are critical for future grid resiliency. In general, VPPs could be composed of grid 
operator-owned assets or privately-owned DER that are controlled under a legal agreement. In 
the case of operating in regions with vertically integrated utilities (VIUs), the VPP would be 
scheduled and dispatched as part of an operating plan in which the VIU manages its generation, 
transmission, and distribution services centrally2. In market-based jurisdictions, the VPP would 
submit offers into the day-ahead and real-time markets.  

1 C. Martinez, S. Xue, and M. Martinez, “Review of the recent frequency performance of the Eastern, Western and 
ERCOT Interconnections,” Lawrence Berkeley National Laboratory, Tech. Rep., December 2010.
2 N.P. Padhy. Unit commitment – a bibliographical survey, IEEE Transaction on Power Systems 19(2):1196–1205, 
2004.
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Researchers have been investigating the advantages of establishing aggregations of distributed 
generators for some time. Algorithms have been developed for optimizing VPP aggregations3,4, 
VPP control mechanisms5, communication methods6, market mechanisms7, scheduling/ 
forecasting power levels for reserve markets8, and techniques of maintaining grid stability9,10,11. 
There have also been demonstrations in the deregulated markets of Europe: Kassel University 
incorporated DERs into a large, geographically dispersed VPP12; the European Union (EU)-
funded FENIX program investigated market scenarios13,14,15; and an operational VPP in 
Denmark is using a Distributed Energy Market16. Additionally, two German utilities began large 
(150 MW) VPP demonstrations consisting of various DERs using Siemens hardware17,18.

In the United States, the Investor-Owned Utilities (IOUs) in California have stated within the 
California Public Utilities Commission (CPUC)/California Energy Commission (CEC) Smart 
Inverter Working Group (SIWG) meetings that they are not interested in controlling residential-
scale DER equipment. Instead, they prefer to communicate to aggregators to update the Electric 
Rule 21 or IEEE 1547 advanced grid-support functions. In practice, many companies like 
Enphase, SolarCity, Vivint Solar, and SunPower already have communication networks to their 

3 N. Capodieci, G. Cabri, "Managing Deregulated Energy Markets: An Adaptive and Autonomous Multi-agent 
System Application," 2013 IEEE Systems, Man, and Cybernetics (SMC) Conference, pp. 758 – 763.
4 L.L. Pfitscher, D.P. Bernardon, L.N. Canha, V.F. Montagner, L. Comasseto, M.S. Ramos, "Studies on parallelism 
of feeders for automatic reconfiguration of distribution networks," 47th International Universities Power 
Engineering Conference (UPEC), pp.1-5, 2012.
5 S. Lukovic, I. Kaitovic, M. Marcello, U. Bondi, "Functional requirements of embedded systems for monitoring and 
control structure of Virtual Power Plants," Environmental, Energy, and Structural Monitoring Systems, pp. 19–26, 
2009.
6 S, Sucic, A. Martinic, D. Francesconi, "Utilizing SOA-ready devices for virtual power plant control in semantic-
enabled Smart Grid Analyzing IEC 61850 and OPC UA integration methodology,” Smart Grid Communications 
(SmartGridComm), 17-20 Oct. 2011.
7 I. Praca, C. Ramos, Z. Vale, M. Cordeiro, "MASCEM: a multiagent system that simulates competitive electricity 
markets," IEEE Intelligent Systems, vol.18, no.6, pp.54,60, Nov-Dec 2003.
8 M. Vasirani, R. Kota, R.L.G.  Cavalcante, S. Ossowski,N. R. Jennings, "An Agent-Based Approach to Virtual 
Power Plants of Wind Power Generators and Electric Vehicles," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 
1314-1322, Sept. 2013.
9 J. F. Baalbergen, V. Karapanos, M. Gibescu, L. van der Sluis, "Emergency voltage control with decentralized 
generation," IEEE PES Innovative Smart Grid Technologies (ISGT Europe), pp. 1–10, 2011.
10 H. Morais, T. Sousa, P. Faria, Z. Vale, "Reactive power management strategies in future smart grids," Power and 
Energy Society General Meeting (PES), pp. 1–5, 2013.
11 D. Pudjianto, C. Ramsay, G. Strbac, "Virtual power plant and system integration of distributed energy resources," 
Renewable Power Generation, vol.1, no.1, pp.10-16, March 2007.
12 P. Fairley, Real Electricity Flows from Virtual Power Plants, MIT Technology Review, 16 April, 2012.
13 A.v.d. Welle, C. Kolokathis J. Jansen, C. Madina, A. Diaz, FENIX deliverable D3.3 Report: Financial And Socio-
Economic Impacts Of Embracing The Fenix Concept, Final Report, 30 September 2009.
14 L. Nikonowicz, J. Milewski, “Virtual power plants—general review: structure, application and optimization,” 
Journal of Power Technologies, vol. 92, no. 3, pp. 135–149, 2012.
15 K. Kok, “Short-term economics of virtual power plants,” 20th International Conference on Electricity 
Distribution, 2009.
16 L. Nikonowicz, J. Milewski, “Virtual power plants—general review: structure, application and optimization,” 
Journal of Power Technologies, vol. 92, no. 3, pp. 135–149, 2012.
17 B. Müller, “The Internet of Things: Virtual Power Plants”, URL: http://www.siemens.com/, Accessed: April 2015.
18 Siemens and RWE, “Siemens offers cloud-based Web service for virtual power plants,” Joint Press Release, 13 
Feb 2014.
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end devices for monitoring. In the future, the IOUs and other utilities will send their needs to 
these entities to update their fleet of devices. While the CAISO and other ISO/RTO markets do 
not support DER aggregation bids, there are a number of indications that this may be changing. 
California Electric Rule 24 permits demand response providers (such as EnerNOC or EnerNex) 
to solicit customers to participate in their demand response programs and bid into the CAISO 
wholesale electricity market. In November 2016, the Federal Energy Regulatory Commission 
(FERC) published a Notice of Proposed intended “to remove barriers to the participation of 
electric storage resources and distributed energy resource (DER) aggregations in the capacity, 
energy, and ancillary service markets”19.  There is increasing discussion among industry leaders 
on this topic from the regulatory standpoint20. 

Despite significant research in this area and multiple VPP field demonstrations, there remains a 
number of technical research gaps, including:

1. Prior VPP field demonstrations were not fully automated or did not respond quick 
enough to provide synthetic inertia or frequency droop/primary frequency reserves. (Most 
demonstrations provide following, secondary, or tertiary control reserves.) No VPPs 
simultaneously provide multiple reserve services with a hierarchical, hybrid, or multi-
level optimization and control architectures.

2. Previous VPPs only use large (generally commercial-scale) DER assets, leaving smaller 
residential-scale solar, wind, and battery systems out of the aggregation. No VPPs 
incorporated residential PV systems or securely communicated to a large number of 
smaller devices over public Internet channels using forthcoming DER communication 
standards (SunSpec Modbus, IEC 61850-90-7, IEEE 1815, or IEEE 2030.5).  

3. No VPP demonstrations dynamically adjusted the DER dispatch when resources are 
unavailable due to communication failures or cyber security compromise. 

This project investigated solutions to these challenges and the VPP design presented herein could 
act as the basis for distribution-level DERs aggregation, optimization and control for multiple 
ancillary service markets.  This project tackles a major component of U.S. grid modernization by 
establishing a robust methodology for integrating large penetrations of renewable energy on the 
current U.S. electric grid without making large investments in new transmission lines or reserve 
generators.  This improves grid resilience by making critical infrastructure more robust to 
attacks, safeguards U.S. energy infrastructure with cyber-resilient communications to distributed 
assets, and includes the ability to respond quickly to targeted or natural disruptions to the grid. 
VPPs also reduce the U.S. dependence on oil and gas, combats climate change by building a 
renewable energy and DER control system to provide grid services, and secures the prosperity of 
the country by transforming the U.S. to more efficient and cleaner energy technologies.  This 
technology will be an invaluable asset for the U.S. smart electricity grid of the future. 

19 FERC, Electric Storage Participation in Markets Operated by Regional Transmission Organizations and 
Independent System Operators, 18 CFR Part 35, Docket Nos. RM 16-23-000; AD16-20-000, Nov 2016.
20 K. Shallenberger, DER aggregation: Sector experts identify emerging trends in a nascent market, Utility Dive July 
24, 2017.
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2 BACKGROUND INFORMATION

The Sandia virtual power plant is designed to provide grid services through the use of 
interoperable, controllable DER equipment. There is a wide range of grid services that are 
required for the safe, secure, reliable operation of the power system and many of these services 
can be provided with appropriately-designed DER control mechanisms which communicate 
modes of operation via commanded and autonomous DER grid-support functions. 

2.1 Grid Services

Conventional power is generated by large power plants and transported through a high-voltage 
transmission system to a low voltage distribution system to serve end loads but this paradigm is 
shifting with the increased of distributed generation. Grid operators regulate this power system to 
provide dependable power to customers using automated and manual ancillary services which 
ensure the power is reliably transported from generation to end loads.  The name and capability 
of the grid services depend on how they are defined for a given region (e.g., ISO/RTO regions 
use different names for similar services21) which often causes confusion when discussing grid 
services, but they fall into a few general categories of balancing, frequency support, and voltage 
support22. FERC described essential reliability services as including load and resource balance, 
voltage support, and frequency support (which are then subdivided into many more categories)23—
but there are also dozens of proposed new services. A recent DOE Grid Modernization 
Laboratory Consortium (GMLC) effort enumerated such grid services24; a portion of that list is 
provided below with the headings organized by Group, Category, Subcategory, and Grid Service 
Name:

1. Scheduling
1.1. Production Coordination

1.1.1. Production Optimization
1.1.1.1. Unit Commitment
1.1.1.2. Energy Scheduling

1.1.2. Wheeling
1.2. Dispatch/Balance

1.2.1. Generation-Load Matching/Meet Energy Imbalance by Generation Change
1.2.1.1. Redispatch
1.2.1.2. Wind and Solar Curtailment

1.2.2. Demand/Modification 

21 J.F. Ellison, L.S. Tesfatsion, V.W. Loose, R.H. Bryne, “Project Report: A Survey of Operation Reserve Markets 
in U.S. ISO/RTO-managed Electric Energy Regions,” Sandia National Laboratories Technical Report, SAND2012-
1000, Sept 2012.
22 E. Hirst, B. Kirby, “Electric-Power Ancillary Services,” Oak Ridge National Laboratory Technical Report 
ORNL/CON-426, Feb 1996.
23 NERC Essential Reliability Services Task Force, “Concept Paper On ERS that Characterize Bulk Power System 
Reliability,” Draft, September 2014.
24 N. Samaan, S. Widergren, R. Melton, A. Somani, R. Pratt, J. Taft, “Grid Services Master List,” PNNL-26599, 
June 2017.
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1.2.2.1. Peak Demand Limiting
1.2.2.2. Energy Shifting (Net Load Adjustments)

1.3. Energy Settlements 
1.3.1. Interchange
1.3.2. Loss Compensation
1.3.3. Uninstructed/Instructed Deviation of Generation

2. Regulation and Stabilization
2.1. Frequency Support

2.1.1. Inertial Support and Damping 
2.1.1.1. Primary System Inertia
2.1.1.2. Inertia Augmentation
2.1.1.3. Inertia Modulation
2.1.1.4. Damping

2.1.2. Primary
2.1.2.1. Droop/Governor Response
2.1.2.2. Load Modification

2.1.3. Secondary
2.1.3.1. Regulation UP
2.1.3.2. Regulation Down
2.1.3.3. Load Modification

2.1.4. Tertiary
2.1.4.1. Replacement
2.1.4.2. Market Responses
2.1.4.3. Load Modification

2.2. Voltage Support
2.2.1. Voltage Adjustment

2.2.1.1. Bulk System Voltage Regulation
2.2.1.2. Distribution-Level Voltage Regulation
2.2.1.3. Edge-Device Voltage Regulation Support

2.2.2. Reactive Power Control
2.2.2.1. Bulk System Var Regulation
2.2.2.2. Distribution-Level Var Regulation
2.2.2.3. Edge Device Var Regulation Support

2.3. Ramping
2.3.1. Ramp Response

2.3.1.1. Generation Dispatch
2.3.1.2. Storage Dispatch
2.3.1.3. Load Modification

The details of these services are explained in detail in the GMLC report, but at a high level, there 
are multiple markets or VIU operations which commit generators to balance energy or provide 
reserves for specific periods of time.  This is typically done a single day ahead of time, although 
there are intra-day adjustments as well. The generators operating reserves are either non-event 
reserves or contingency reserves, further subcategorized based on their speed and magnitude25.  

25 E. Ela, M. Milligan, B. Kirby, Operating Reserves and Variable Generation, NREL/TP-550-51928, August 2011. 
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As shown in Figure 1, within non-event reserves there are regulating reserves which absorbs fast, 
smaller power imbalances and following reserves which absorbs the slower, larger power 
imbalances. Depending on the region, the Automatic Generation Control (AGC) signal for 
regulation is issued every 4-8 seconds. Load following reserve signals are issued at much slower 
rates – typically one hour. 

The primary concern of the transmission system operator is to maintain bulk system stability by 
matching generation to load.  Small deviations in this balance are common and compensated for 
by the inertial energy of the online generators. When the load is greater than generation, the bulk 
system frequency decreases; and when there is more power production than load, the frequency 
increases. If the frequency deviates from the nominal frequency by a large enough magnitude, 
automated protection mechanisms will initiate. As frequency drops, first load shedding 
(disconnecting consumer regions) occurs in multiple tiers and eventually power plants are 
disconnected to ensure they are not damaged. Both protection mechanisms cause customer 
blackouts. Similarly, transmission and distribution systems are designed to disconnect from 
voltage deviations caused by faults, or excessive active or reactive power flows to protect 
equipment. 

When there is a fault on the system (e.g., sudden generator, load center, or transmission line loss) 
contingency reserves prevent bulk system collapse. Initially, the inertial response of the 
operating generators will prevent the frequency from changing instantaneously. As soon as the 
change in frequency is measured, primary (~1-30 seconds from the fault), secondary (~30 sec-10 
min from the fault), and tertiary (~10-30+ min from the fault) reserves are employed to arrest the 
frequency change and restore the system to nominal grid frequency. These reserves are initiated 
in a cascading fashion to ensure the frequency is restored reliably. 

Voltage regulation on the transmission and distribution systems is necessary for the proper 
operation of the power equipment and end loads. Many devices are used to maintain the voltage 
such as load tap changing transformers (LTCs), voltage regulators, and capacitor banks. 

It was not the intention of this work to redefine these services, define new services, or investigate 
the markets for grid services; but rather design the technology for DER aggregations to 
participate as a single entity in the services. The ancillary services that this project targeted are 
shown in Figure 1.  Ultimately, the team investigated two scenarios: 

1. Co-optimizing the participation of a VPP in an energy market and a tertiary reserve 
market. 

2. Providing voltage regulation on distribution circuits with a VPP of DER located on the 
same feeder. 

but only programmed the former VPP. The simulation results of the voltage regulation VPP are 
presented in a second report.26 

26 A.P. Meliopoulos, G. Cokkinides, B. Xie, C. Zhong, J. Johnson, “Full State Feedback Control for Virtual Power 
Plants,” Sandia Technical Report, September 2017. 
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Figure 1. Target ancillary services for the VPP project were scheduling (bidding into 
energy markets), tertiary contingency reserve, and distribution voltage regulation. 

2.2 DER Grid-Support and Interoperability Capabilities

In the last decade, DER interconnection and interoperability codes and standards in the US and 
around the world have been rapidly changing to offer grid operators additional resources to 
provide ancillary services27.  The impetus to change the DER requirements arose from increasing 
penetrations of grid-connected, distributed, inverter-based renewable energy systems which 
reduced system inertia and replaced it with variable, non-dispatchable generators. Since the mid-
2000s, the U.S. has relied on the IEEE 1547 series28 of standards to harmonize the 
interconnection requirements across the country.  However, very high penetrations of 
photovoltaic installations—driven by state renewable portfolio standards, favorable economics, 
and consumer preference—led regulators to conclude there is an eminent need to have DER grid-
support capabilities for reliable power system operations. As a stop-gap measure, IEEE 1547a29 
was drafted in 2014, which permitted—but did not require—DER to actively regulate voltage 
and frequency with agreement of the Area Electric Power System operator.  

Taking the regulation process further, the Hawaiian and Californian state Public Utility 
Commissions changed their interconnection standards to require grid-support functions for 
inverter-based DER. Currently, HI Rule 14H30 and CA Rule 2131 have requirements for wide 

27 D. Rosewater, J. Johnson, M. Verga, R. Lazzari, C. Messner, R. Bründlinger, K. Johannes, J. Hashimoto, K. 
Otani, International development of energy storage interoperability test protocols for renewable energy integration, 
EU PVSEC, Hamburg, Germany, 14-18 Sept, 2015.
28 IEEE Standard 1547-2003, Standard for Interconnecting Distributed Resources with Electric Power Systems, 
2003.
29 IEEE Standard 1547a-2014, Standard for Interconnecting Distributed Resources with Electric Power Systems: 
Amendment 1, 2014.
30 Hawaiian Electric Company, Inc., Rule No. 14, Service Connections and Facilities on Customer's Premises, 
Section H: Interconnection of distributed generating facilities with the company’s distribution system, effective 
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frequency and voltage ride-throughs, and active and reactive power functions. IEEE 1547 is 
currently undergoing a full revision to add these functions to the interconnection standard and re-
harmonize the requirements across the nation, but this standard is not expected until late 2017 or 
2018. 

As a result of the new US interconnection requirements, and similar requirements in Europe, 
DER vendors have added many grid interactive functions to their equipment. Many of these 
capabilities are defined in the International Electrotechnical Commission (IEC) Technical Report 
(TR) 61850-90-732 and encoded in the SunSpec Alliance Modbus information models33.  Many 
of these same functions are defined in the German VDE34, Italian technical rule CEI 0-2135 for 
low voltage and CEI 0-1636 for medium and high voltage, and others37. In the vast majority of 
cases, modern commercial DER equipment can configure a range of DER advanced grid 
functions through interoperable communication tools.  Examples of these capabilities are 
provided in prior work by the Smart Grid International Research Facility Network (SIRFN)38 and 
Sandia National Laboratories39. 

In this work, the team choose to focus on the challenges of providing (a) energy and tertiary 
contingency reserves by co-optimizing the DER resources and (b) providing distribution voltage 
regulation with a VPP isolated on a single feeder. The active power headroom in renewable 
energy DER devices was created through the curtailment function described in IEC 61850-90-7, 
SunSpec Models, and the IEEE 1547 full revision.  By curtailing the PV or other renewable 
energy resources through power electronics commands, the active power can be increased and 
decreased to respond to the needs of the VPP, in addition to any production generated by storage 
technologies. One distinct feature of a VPP serving balancing and frequency support services is 
that the VPP does not need to have a single point of connection to the grid, but instead is 
composed of an aggregation of different DER sources that connect to the grid at geographically 
diverse points of common coupling. Therefore, the VPP could be used to aggregate DGs, energy 

October 21, 2015.
31 Pacific Gas and Electric Company, Electric Rule No. 21, Generating Facility Interconnections, Filed with the 
CPUC on 20 Jan, 2015.
32 IEC Technical Report 61850-90-7, “Communication networks and systems for power utility automation–Part 90-
7: Object models for power converters in distributed energy resources (DER) systems,” Edition 1.0, Feb 2013.
33 SunSpec Alliance Interoperability Specification, SunSpec Inverter Models, Document #12020 Version 1.5, 
released 4-14-2015.
34 VDE Application Guide VDE-AR-N 4105: Generators in the low voltage distribution network. Application guide 
for generating plants’ connection to and parallel operation with the low-voltage network, 1/08/2010.
35 CEI Reference Technical Rules for the Connection of Active and Passive Consumers to the HV and MV 
Electrical Networks of Distribution Company, CEI 0-16 and 0-16, 2014.
36 CEI Reference Technical Rules for the Connection of Active and Passive Users to the LV Electrical Utilities, CEI 
Reference 0-21, December 2013.
37 J. Johnson, S. Gonzalez, A. Ellis, “Sandia DER Interoperability Test Protocols; Relationship to Grid Codes and 
Standards,” IEEE International Conference on Standards for Smart Grid Ecosystems, Bangalore, India. 6-7 Mar, 
2014.
38 J. Johnson, R. Bründlinger, C. Urrego, R. Alonso, “Collaborative Development Of Automated Advanced 
Interoperability Certification Test Protocols For PV Smart Grid Integration,” EU PVSEC, Amsterdam, Netherlands, 
22-26 Sept, 2014.
39 J. Hernandez-Alvidrez, J. Johnson, “Parametric PV Grid-Support Function Characterization for Simulation 
Environments,” IEEE PVSC, Washington, DC, 25-30 June, 2017.
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storage systems, entire microgrids, demand response units, electric vehicles and even entire 
distribution stations across a state or even the entire interconnection. The voltage regulation 
functionality is created with the fixed power factor function which is defined in IEC 61850-90-7, 
SunSpec Models, and the IEEE 1547 full revision.

2.3 VPP Economics and Regulatory Challenges

While the technical aspects of VPPs are the focus of this work, it is worth a short discussion of 
the economic, legal, and regulatory challenges. While it is likely that capital costs (and 
regulation barriers) associated with creating VPPs will temporarily prevent them from being 
formed, DER interoperability and interconnection requirements will slowly reduce this upfront 
cost as more devices come ‘out-of-the-box’ with the ability to provide grid services. Already 
many DER installers, vendors and aggregators have the ability control large fleets of DER 
equipment.  Once the VPPs are created, they must demonstrate they are cost competitive with 
traditional thermal generators when bidding into ancillary markets or operating under the direct 
or indirect supervision of utilities/ISOs/RTOs. Some of the prior work in the EU has looked at 
techno-economic analysis of VPPs, but further studies which include fuel costs of the traditional 
generators, opportunity cost of curtailing the PV output to provide headroom, operations and 
maintenance costs of the equipment, thermal losses incurred in network transmission of power, 
and other VPP operations costs must be completed.  Ultimately, if VPPs are allowed to 
participate in ISO/RTO markets, it clear that many aggregators will bid into these markets. Then 
it is up to the markets to decide who is responsible to provide power. 

There are also multiple legal and regulatory hurdles preventing virtual power plants in the U.S. 
First, while demand response and energy storage is allowed to participate in energy, capacity, 
and ancillary service markets40 (see FERC Order 71941), ISO/RTO regulations historically do not 
allow participation by aggregations of the DER resources42 but this is changing. CAISO is 
beginning to recognize aggregations of small DER are useful assets and should be included as 
market participants.  In fact, CAISO currently allows Non-Generator Resources (like energy 
storage systems) to bid in wholesale markets and they are considering adding a Distributed 
Energy Resource Provider (DERP) asset class to markets in the future.43 This project did not 
investigate regulations preventing VPP participation in ISO markets, nor determine regulatory 
obstacles to broad VPP deployment in American reserve markets. Yet, it is only through sound 
research and field demonstrations—such as those started in this project—that regulators will be 
incentivized to change these requirements. 

40 J.B. Eisen, “Distributed Energy Resources, ‘Virtual Power Plants’, and the Smart Grid,” Environmental & Energy 
Law & Policy Journal, pp. 191-213, 2012.
41 Federal Energy Regulatory Commission 18 CFR Part 35 Wholesale Competition in Regions with Organized 
Electric Markets, October 17, 2008.
42 A. Zurburg, “Unlocking Customer Value: The Virtual Power Plant,” worldPower, 2010.
43 CAISO, “Energy Storage and Aggregated Distributed Energy Resource Education Forum,” April 16 & 23, 2015, 
accessed 14 September 2017, http://www.caiso.com/Documents/Presentation-
EnergyStorageandAggregatedDistributedEnergyResource-EducationalForum.pdf  

http://www.caiso.com/Documents/Presentation-EnergyStorageandAggregatedDistributedEnergyResource-EducationalForum.pdf
http://www.caiso.com/Documents/Presentation-EnergyStorageandAggregatedDistributedEnergyResource-EducationalForum.pdf
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Further, energy and financial accounting for each of the DER users is also legally murky. For 
example, how would a VPP prove the reserve metrics were met when there is no single meter 
showing the net effect of the disparate devices? While control of DER would be worked out with 
a contract between the VPP and the DER owners, there are a number of difficulties regarding 
balanced payment for access to the DERs. Proper metering of each of the assets is necessary to 
compensate owners correctly, but in the case of PV and other renewable sources when the 
inverter is curtailed to a percentage of the nameplate rating, the waived power is unknown and 
therefore the lost opportunity cost of not producing that power is unknown. Similarly, when 
demand response is taken, it is unknown how much power is saved over the duration of the DR 
event; therefore, it is difficult to report a firm number as load reduction back to the ISO/RTO and 
compensate the owner. In the case of demand response, there may also be contractual agreements 
and/or penalties if the owner disables the controllability of the resource. Lastly, there are 
questions about the fairness of the VPP controls: for example, if Battery 1 has a better 
communication link to the VPP and is used more heavily than Battery 2, how is the rate structure 
designed so that the DER are compensated appropriately? For storage systems, preparing the 
DER for a reserve event will likely to require arbitrage, which is illegal in many regions. The 
regulatory and accounting questions must continue to be enumerated so roadblocks are 
identified; from there, detailed options for navigating through these obstacles can be established 
to demonstrate VPP viability and assist with industry commercialization.
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3 VPP DESIGNS

The end goal is a VPP software system which provides utilities, balancing authorities, and third 
parties a portfolio of services to adjust the operation of a DER fleet. Virtual power plants can be 
used for a range of grid services.  These services could be changed day to day or even hourly, 
and it is possible to provide multiple grid services simultaneously (like in the case of microgrid 
applications).  These services can be selected depending on the needs of the grid operator at any 
given time. Sandia has been creating DER control and optimization mechanisms for a range of 
services for many years, including voltage regulation44,45,46 , small signal stability47 and wide-
area damping for transmission systems48, frequency regulation49, and frequency reserves (e.g., 
synthetic inertia50, frequency-droop (primary reserve)51, secondary52 or tertiary contingency 
reserves53). Each of these services will require different market/utility/ISO/RTO interactions, 
optimization, and control, as well as studies of DER interoperability/dispatchability, 
communication limitations, protocol assessment, market profitability/influences, control 
stability, forecasting, cyber-resilience, and effective utilization of different DER resources. This 
knowledge will ultimately be integrated into a monolithic software program that will provide 
each of these ancillary services. At this stage of development, the team has built a fundamental 
framework for a VPP that contributes to energy and reserve markets (Section 3.1), which can 
then be extended to simultaneously provide a variety of grid services based on operational needs. 
The following sections include VPP designs for different grid services; note that these designs 
include many of the same core VPP components which will be discussed in further detail in 
Section 4.  

It should also be noted that providing fleets of DER with autonomous functionality in some ways 
represents VPP operations, but this does not include transactive energy concepts or account for 

44 J. Seuss, M.J. Reno, R.J. Broderick, R.G. Harley, “Evaluation of reactive power control capabilities of residential 
PV in an unbalanced distribution feeder,” 2014 IEEE PVSC, pp. 2094-2099, 8-13 June 2014.
45 M. Reno, J. Quiroz, O. Lavrova, and R. Byrne, “Evaluation of Communication Requirements for Voltage 
Regulation Control with Advanced Inverters,” in proceedings of the IEEE North American Power Symposium 2016, 
Denver, CO, September 2016.
46 J. Quiroz, M. Reno, O. Lavrova, R. Byrne, “Communication Requirements for Hierarchical Control of Volt-VAr 
Function for Steady-State Voltage,” IEEE ISGT 2017, Arlington, VA, April 23-26, 2017.
47 R. Byrne, R. Elliott, F. Wilches-Bernal, R. Concepcion, J. Neely, O. Lavrova, and J. Quiroz, “Small signal 
stability of the western North American power grid with high penetrations of renewable generation,” in proceedings 
of the 43rd IEEE Photovoltaic Specialists Conference, Portland, OR, June 2016.
48 J. Neely, J. Johnson, R. Bryne, R. T. Elliott, Structured optimization for parameter selection of frequency-watt 
grid support functions for wide-area damping, DER Journal, vol. 11, no. 1, pp. 69-94, 2015.
49 J. Johnson, J. Neely, J. Delhotal, M. Lave, “Photovoltaic Frequency-Watt Curve Design for Frequency Regulation 
and Fast Contingency Reserves,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1611-1618, Nov. 2016.
50 R. Concepcion, F. Wilches-Bernal, R. Byrne, “Effects of Communication Latency and Availability on Synthetic 
Inertia,” IEEE ISGT 2017, Arlington, VA, April 23-26, 2017.
51 F. Wilches-Bernal, R. Concepcion and R. H. Byrne, “Impact of Communication Latencies and Availability on 
Droop-Implemented Primary Frequency Regulation,” Proceedings of the IEEE North American Power Symposium, 
Morgantown, WV, September 17 -19, 2017.
52 F. Wilches-Bernal, R. Concepcion, J. Neely, R. Byrne, and A. Ellis, “Communication Enabled Fast Acting 
Imbalance Reserve (CE-FAIR),” IEEE Trans. Power Systems, 2017.
53 J. Neely, S. Gonzalez, J. Delhotal, J. Johnson, M. Lave, “Evaluation of PV Frequency-Watt Function for Fast 
Frequency Reserves,” IEEE Applied Power Electronics Conference (APEC), Long Beach, CA, March 20-24, 2016.
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the financial components of the operations. Here we focus on current or future markets which 
could provide revenue streams for the VPP.  In the first VPP design, the VPP interacts with the 
ISO/RTO market directly to generate revenue. In the second VPP, the VPP can provided primary 
frequency reserves which is not a current market, but has been considered in CAISO54 and other 
regions55.  The final VPP design was for voltage regulation, in which it was envisioned that a 
utility would be faced with purchasing voltage regulation equipment (e.g., a capacitor bank), or 
using the DER on the feeder to perform the voltage regulation. The utility in this case could pay 
the VPP (and DER owners) for this service to avoid the cost of purchasing the new equipment. 
This scenario is perhaps most likely contextualized in a VIU setting. 

Many of the VPP designs for this project are based on a proposed aggregation of DER assets at 
the Sandia National Laboratories Distributed Energy Technologies Laboratory (DETL), the 
$10M University of New Mexico-operated Mesa del Sol Aperture Center microgrid, and the 
DOE-funded Public Service Company of New Mexico (PNM) Prosperity Site. The sites are 
shown in Figure 2 and the combined collection of DER assets at these locations is:

 PNM 500 kW Battery Energy Storage System (BESS) 
 PNM 500 kW PV
 MdS Site Controller (BEMS) connected to:

o 240 kW natural-gas-powered reciprocating engine
o 80 kW natural-gas-powered phosphoric acid fuel cell
o 50 kW PV array mounted as a parking lot shading structure
o 163 kWh / 50 kW advanced lead-acid battery bank

 DETL 30 kW battery
 DETL 225 kW diesel genset
 DETL SunSpec Gateway (managing 10 residential inverters)

These sites have also been (and continue to be) a central part of several research ventures.  For 
instance, PNM research at the Prosperity Site has demonstrated PV smoothing56, load shifting57, 
and peak smoothing58. This team also conduced PV-smoothing control demonstrations using the 
prosperity battery and the MdS genset59,60. 

54 R. Mullin, CAISO Seeks Primary Frequency Response Market, RTO Insider, December 26, 2016. URL: 
https://www.rtoinsider.com/caiso-frequency-response-36087/
55 W. Li, P. Du, N. Lu, "Design of a New Primary Frequency Control Market for Hosting Frequency Response 
Reserve Offers from both Generators and Loads," IEEE Transactions on Smart Grid, vol. PP, no.99, pp.1-1.
56 S. Willard, O. Lavrova, B. Arellano, J. Hawkins, A. Mammoli, B. McKeon, “Smoothing and shifting PV – 
Applying energy storage to enhance the benefits of renewable energy.” 2012 World Renewable Energy Forum; 
ASES 2012.
57 A. Ellis, D. Schoenwald, J. Hawkins, S. Willard, B. Arellano, “PV output smoothing with energy storage.” 38th 
IEEE Photovoltaic Specialists Conference (PVSC), 2012.
58 O. Lavrova, F. Cheng, S. Abdollahy, H. Barsun, A. Mammoli, D. Dreisigmayer, S. Willard, B. Arellano, C. van 
Zeyl, “Analysis of battery storage utilization for load shifting and peak smoothing on a distribution feeder in New 
Mexico.” 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).
59 J. Johnson, A. Ellis, A. Denda, K. Morino, T. Shinji, T. Ogata, M. Tadokoro, “PV Output Smoothing using a 
Battery and Natural Gas Engine-Generator,” 39th IEEE Photovoltaic Specialists Conference, Tampa Bay, Florida, 
16-21 Jun, 2013.
60 J. Johnson, K. Morino, A. Denda, J. Hawkins, B. Arellano, T. Ogata, T. Shinji, M. Tadokoro, A. Ellis, 
“Experimental Comparison of PV-Smoothing Controllers using Distributed Generators,” Sandia Technical Report 
SAND2014-1546, Feb 2014.
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Figure 2. The sites in the UNM-PNM-SNL VPP use case. 

3.1 VPP Design for Energy and Reserve Markets

A modular VPP architecture was designed to co-optimize bids into energy and tertiary 
contingency reserve markets, as shown in Figure 3. This VPP is constructed of a number of 
modules which interact with DER, markets, and back-end databases to provide the grid service: 

1. A market commitment engine uses stochastic optimization to maximize expected profit 
by determining day-ahead VPP bids for the hourly energy and reserve markets. The 
commitment engine contracts with the ISO/RTO to determine the VPP day-ahead 
commitments.

2. Once commitments have been established, the dispatch engine uses stochastic 
optimization to find the dispatch schedule for the next short time horizon. This time 
horizon will be at minimum the amount of time it takes to solve the optimization. The 
optimizer finds the dispatch schedule for DER assets using a cost minimization objective 
function with a large penalty for not meeting the commitment.  This penalty can be 
changed to represent the cost of purchasing energy on the spot market or made more 
severe if this is not an option and the VPP is critical to providing these services.  

3. To maintain the desired VPP output magnitude, a centralized controller sends DER 
power setpoints via a communication system. The centralized controller uses multiple 



24

PID controllers and a swing controller (typically for a battery) to ensure the VPP meets 
the aggregate demand in real-time. 

4. A forecasting component provides long-term (24-60 hours) forecast of RE anticipated 
power to the commitment engine, and short term (0-12 hours) forecasts to the dispatch 
optimization engine.

5. The secure communications system monitors and issues commands to each DER 
through a range of DER gateways which communicate using a variety of open and 
proprietary communication protocols. 

This components and optimization of this VPP will be discussed at length in Section 4. 

Figure 3. The VPP construct for providing power to the energy and contingency reserve 
markets.

3.2 VPP Design for Primary Frequency Response Reserves

In this VPP design, we envision a virtual power plant capable of meeting primary frequency 
response reserve metrics by incorporating a hybrid control scheme consisting of coordinated 
centralized commercial/utility-scale DERs and decentralized control to dozens of small, 
residential-scale (<1 kW) DERs using standardized interoperability functions. For primary 
frequency response reserves, it is not possible to rely solely on centralized control of DERs 
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because communication latencies will prevent the aggregation from meeting the response and 
ramp time metrics. Fortunately, the synthetic frequency response reserve is called upon during 
the initial frequency drop/rise during a fault to simulate spinning inertia and governor response.  
Individual DERs will be programmed with VPP-optimized advanced interoperability grid 
functions (e.g., frequency-watt functions) every 15 minutes based on updated renewable and 
demand response (DR) forecasts.  When there is a grid frequency change, the DERs with 
autonomous functions will exchange active power with the grid to partially stabilize the 
disturbance.  As shown in Figure 4, the VPP is constructed of a number of modules: 

1. A stochastic commitment engine determines the maximum reserve capacity the VPP can 
provide toward the grid reserve requirements on a day-ahead, forward basis. The 
commitment engine contracts directly with the utility or has a cleared offer in the 
ancillary service markets61. The contract/offer is based on long-term forecasts of RE and 
DR units within the VPP pool, estimated operational and opportunity costs, desired profit 
margin, and reliability requirements.

2. Once a commitment has been established, the stochastic optimizer is enabled to adjust 
storage states-of-charge and turn on/off the gensets. The optimizer monitors the status of 
the DERs and, based on short term DER forecasts and DER availability, the optimizer 
will charge62 the ESS or start gensets to maintain enough headroom to always meet the 
reserve requirements. The VPP maintains the ability to meet the reserve with economic 
stochastic optimization while improving expected costs over alternative options. 

3. In order to reach the desired VPP output magnitude, hybrid control is employed to 
generate the appropriate system response. Distributed controls will be enabled in inverter-
based DER with SunSpec, IEC 61850, IEEE 2030.5, or IEEE 1815 frequency-watt 
functions shown in Figure 4 and in engine-generators using droop controls. Since the 
behavior of the DERs relies on local measurement of grid frequency, the autonomous 
response of the DERs will be less than 10 cycles (0.16 secs). Unfortunately, the response 
will rarely meet the reserve requirements alone, so the aggregate autonomous power 
response must be measured such that the centralized control can then provide the 
remainder of the reserve magnitude. 

4. A forecasting component is the same as the previous VPP and provides long-term (24 
hour) forecast of RE and DR anticipated power to the commitment engine, and short term 
(<1-60 minute) forecasts to the dispatch engine.

5. The secure communications system monitors and issues commands to each DER 
through a range of DER gateways which communicate using a variety of open and 
proprietary communication protocols. This functionality will be established with a 
Distributed Energy Resource Management System (DERMS).

61 There is currently no market in the U.S. for primary frequency reserves (i.e., fast frequency response reserves), 
although it is possible this market will exist in the future. 
62 ESSs are likely to perform other grid-support functions or economic analyses to schedule discharge. 
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Figure 4. The VPP concept for providing frequency response reserves. Exemplary DERs 
from four sites in Albuquerque, NM are used to illustrate the diversity of resources, 

communication protocols, and gateways.

The following sections describe how the VPP for primary frequency reserves would operate. 

3.2.1 Forecasting 
The long-term forecasting component of the VPP is necessary to calculate the reserve capacity 
that can be offered to the ISO/RTO over the commitment period.  The bid into the day-ahead 
market essentially promises to the utility/ISO/RTO that the VPP can meet the Reserve 
Magnitude Target (RMT) for that duration. For example, if a wind turbine was a DER in the 
VPP and the next 24 hours were forecast to be windy the VPP would be able to provide a higher 
reserve magnitude than if the next 24 hours were calm. Similarly, if the next day was going to be 
hot with large demand response-enabled air conditioning loads, the VPP could provide a higher 
reserve because those devices could be turned off temporarily to provide more ‘negawatts’ in 
aggregate. 

For long-term forecasting, the forecasting component converts meteorological forecasts to PV 
power, wind power, and thermostatically or otherwise controllable load forecasts. First, hourly, 
day-ahead NOAA forecasts of irradiance, wind speed, and temperature are collected. Then PV 
power forecasts can be computed using a PV model (like the Photovoltaic Array Performance 
Model63), wind production can be computed from wind power models, and demand response 
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capabilities for thermal units (air conditioning) can be predicted from a 1st order thermal model 
with outdoor ambient temperature.

The short-term forecasting component supports unit dispatch decisions accounting for renewable 
energy variability. For example, if PV power is forecasted to decrease in the next 15 minutes, 
e.g., due to cloudiness, the PV system may not be able to provide energy in the event of a 
frequency deviation. In that case, the VPP can prepare for that loss in reserve capacity by 
charging energy storage systems or starting a generator that is off. This ensures that the risk of 
not providing the committed reserve capacity is minimized. Short-term forecasting can be done 
for all DR assets using statistical methods fit to recent DR performance data, e.g., PV power 
production.

3.2.2 Commitment Engine 
As stated above, the capabilities of the VPP must be provided to the utility/ISO/RTO to meet 
FERC requirements64. This robust solution provides greater than 99% availability by appropriate 
reserve magnitude commitments/bids. This could be confirmed with Monte Carlo simulations for 
the next 24 hours with probabilistically-generated forecasts, DER communication dropouts, and 
DER failures. The probability densities for each of the losses and the stochastic forecasting 
process model would be determined with historical information from each of the DERs. 
Generally, the larger DERs would be more reliable because they have dedicated communication 
connections maintained by utilities.

3.2.3 Stochastic Optimization
The ESS optimizer uses Sandia’s Python-based Pyomo65 optimization framework in conjunction 
with a commercial solver, Gurobi Optimizer66. While more technically challenging, stochastic 
inputs make the optimizer robust to residual uncertainties in the forecasts of PV, wind and other 
RE output and demand loads. In particular, residual uncertainty in the RE/DR forecast is 
minimized (ideally, less than 5%), but accommodates forecast outliers where there are large 
deviations in predicted and actual renewable energy production. The goal is to prepare the 
storage DERs for losses in renewable energy and demand response available power. In practice, 
the optimization function could either be performed in-house by a VIU or it could be contracted 
to a VPP aggregator. In either case, the goal is to operate the VPP in such a way to maximize 
availability and minimize utility/ISO/RTO/VPP costs while maintaining ANSI, IEEE, and NERC 
standards. VPP expenses are a combination of opportunity costs, operation costs, and 
maintenance costs associated with added wear on the VPP components (for example, loss of 
battery life due to cycling). The decision variables in the optimization include charge/discharge 

63 D. L. King, W.E. Boyson, J.A. Kratochvil, Photovoltaic Array Performance Model, Sandia Technical Report 
SAND2004-3535, Dec 2004.
64 J. F. Ellison, L.S. Tesfatsion, V.W. Loose, R. H. Byrne, “Project Report: A Survey of Operating Reserve Markets 
in U.S. ISO/RTO-managed Electric Energy Regions,” Sandia Technical Report, SAND2012-1000, Sept. 2012.
65 W.E. Hart, C.D. Laird, J.P. Watson, D.L. Woodruff, (2012) Pyomo: Optimization Modeling in Python. Springer, 
Berlin.
66 Gurobi Optimization, the state of the art mathematical programming solver, URL: http://www.gurobi.com/, 
accessed 7/16/15.
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commands to the ESSs using IEC 61850-90-7/SunSpec Alliance or other DER communication 
protocols. 

3.2.4 Hybrid Control
The hybrid controller consists of a portion of DERs configured with autonomous functionality 
and others configured to receive centralized control commands. 

3.2.4.1 Distributed Control 
The objective of primary frequency response reserves is to operate within the first few seconds 
of a frequency change to arrest the system imbalance until secondary control reserves are 
brought online with automatic generation control (AGC) to replace the frequency response 
reserves.  An example of the time scales that frequency response reserves operate during a grid 
fault (e.g., the loss of a generator) is shown in Figure 5. The VPP would ideally provide the 
reserve magnitude within the first 2-3 seconds to reduce the severity of the nadir.  To do this, the 
distributed controller must carefully select the parameters for the inverter-based frequency-watt 
functions and the slope of the generator governors. Normally a governor slope is selected to be 
5% (i.e., 3 Hz deviation would result in the full output of the generator), but for the VPP the 
distributed controller will likely select a far more aggressive slope (e.g., ~1%) so that the prime 
movers produce full output at 0.6 Hz grid frequency deviation. Similarly, the frequency-watt 
settings, shown in Figure 6, would be chosen by the distributed controller to aggressively 
respond to frequency deviations. Prior research on selecting PV inverter frequency-watt settings 
to maintain grid frequency during an N-1 contingency on the island grid of Lanai, HI could be 
leveraged to optimize the distributed control settings for the VPP DERs67,68,69. 

67 J. Neely, J. Johnson, J. Delhotal, S. Gonzalez and M. Lave, "Evaluation of PV frequency-watt function for fast 
frequency reserves," 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 
2016, pp. 1926-1933.
68 J. Johnson, J. Neely, J. Delhotal, M. Lave, “Photovoltaic Frequency-Watt Curve Design for Frequency Regulation 
and Fast Contingency Reserves,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1611-1618, Nov. 2016.
69 A. Hoke, A. Nelson, J. Tan, V. Gevorgian, C. Antonio, K. Fong, M. Elkhatib, J. Johnson, R. Mahmud, J. Neely, 
D. Arakawa, The Frequency-Watt Function: Simulation and Testing for the Hawaiian Electric Companies, Grid 
Modernization Laboratory Consortium (GMLC) Technical Report, July 2017.
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Figure 5: Typical ERCOT Frequency Excursion70 with the VPP frequency response 
reserve time metrics.

Distributed droop-like controls will be programmed into converter-based DER to autonomously 
respond to locally-measured frequency deviations in sub-second time frames. Renewable energy 
sources can be curtailed to provide headroom during frequency drops; but in doing so, there are 
significant opportunity costs for the DER owners because they will not be gathering all the 
available renewable energy revenue. Therefore, the selection of optimal frequency-watt (FW) 
curve points—illustrated in Figure 6—is necessary to minimize the lost energy revenue while 
maintaining enough headroom to meet the reserve commitment with a given (e.g., 99.9%) 
confidence. This trade-space is the basis for the optimal control strategy, which provides the 
required capabilities for minimal DER opportunity and operation costs. One of the major 
challenges for this type of VPP is associated with stochastic optimization computation times and 
communication failures/latencies. 
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70 NREC Resources Subcommittee, Balancing and Frequency Control, January 26, 2011.
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Figure 6. Autonomous frequency-watt curve which curtails active output power at 
nominal grid frequency, increases generation at low grid frequency, and decreases 

generation at high grid frequency.

3.2.4.2 Centralized Control 
Once the distributed controllers respond to the frequency deviation, the centralized control is 
responsible for adjusting the power from the larger DERs to meet the reserve magnitude. The 
VPP will predict the expected response of the autonomous control based on the grid frequency 
deviation. The frequency will be monitored continuously with a Phasor Measurement Unit 
(PMU) so that the centralized controller is aware when it must send DER commands and to 
estimate the response of the DERs with distributed-controls. The distributed control DERs will 
be continuously monitored to verify the response of the distributed controls. Based on Sandia 
experiments at the DETL, the response of power electronic devices with frequency-watt 
functions is highly accurate, but the DR response will vary depending on the duty cycles of the 
DERs, ambient temperatures, thermostat settings, etc. As information is received from the 
distributed DER, the estimate for the distributed response becomes more accurate and the 
centralized controller updates the DER active power commands. 

3.2.5 Communications 
The VPP construct necessitates control communications to distribution-level devices at 
residential and commercial facilities over wired and wireless communication channels. In the 
hypothetical VPP use case communications to DETL equipment would use SunSpec Modbus 
RTU and TCP/IP commands71 to 10 advanced inverters with the ability to curtail the output of 
the PV system. The remaining generators and demand response units at MdS, Prosperity and 
UNM would be controlled with a variety of communication protocols:

- Control of the MdS devices will be conducted through a communication link to the Toshiba-
developed Building Energy Management System (BEMS). In a previous U.S.-Japan bilateral 
project, BEMS-connected DERs at MdS were controlled to provide PV smoothing using an 
OSIsoft PI historian72.

- The prosperity battery is controlled using gain adjustments and auxiliary inputs in the control 
algorithm73, programmed into the Battery Energy Storage System (BESS) by Ecolt. 
Previously, Sandia led a project to smooth prosperity PV output by adjusting the battery 
control74 

- The thermostats in the UNM mechanical engineering building will be control with OpenADR 
commands via BACnet. 

71 J. Johnson, B. Fox, “Automating the Sandia Advanced Interoperability Test Protocols,” 40th IEEE PVSC, 
Denver, CO, 8-13 June, 2014.
72 J. Johnson, K. Morino, A. Denda, J. Hawkins, B. Arellano, T. Ogata, T. Shinji, M. Tadokoro, A. Ellis, 
“Experimental Comparison of PV-Smoothing Controllers using Distributed Generators,” Sandia Technical Report 
SAND2014-1546, Feb 2014.
73 A. Ellis and D. Schoenwald, PV Output Smoothing with Energy Storage, Sandia Technical Report, SAND2012-
1772, March 2012.
74 J. Johnson, A. Ellis, A. Denda, K. Morino, T. Shinji, T. Ogata, M. Tadokoro, “PV Output Smoothing using a 
Battery and Natural Gas Engine-Generator,” 39th IEEE Photovoltaic Specialists Conference, Tampa Bay, Florida, 
16-21 Jun, 2013.
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Latencies associated with monitoring distributed control DERs and commanding centralized 
control DERs are especially critical. The precise requirement depends on a tradeoff between the 
accuracy of the distributed control response estimation and accuracy of the centralized controller 
response. If the centralized controller can hit the reserve magnitude target directly, the 
communications requirements can be relaxed; however, if it takes multiple attempts to adjust the 
DER aggregation to reach the reserve setpoint, the communication time must be short. 

3.3 VPP Design for Regulation, Following Reserve, and Contingency 
Reserves

The broadly-applicable Sandia VPP architecture can provide grid stability with operating 
reserves.  The end goal is a VPP software system which provides utilities, balancing authorities, 
and third parties a portfolio of services to adjust the operation of a DER fleet and in this case, we 
designed the system to provide frequency control reserves and non-event reserves (regulation 
and following reserves). As shown in Figure 7, the VPP is constructed of several modules: 

1. A stochastic market engine which determines the appropriate supply curve (price vs 
provided active power) for one or multiple grid-support services (e.g., frequency 
reserves). The market engine contracts with the utility, ISO, or ancillary service markets 
based on long-term forecasts of renewable energy and demand response units within the 
VPP pool, estimated operational and opportunity costs, desired profit margin, and 
reliability requirements.  

2. Once a commitment has been established in the day ahead, hourly, or sub-hourly markets, 
a DER optimization is performed to adjust storage states-of-charge and monitor the 
status of the DER. Based on the renewable energy and demand short term forecasts, the 
DER optimization establishes the optimal economic dispatch of DER resources. Note that 
the optimization will not be able to run in real-time, so there will be some error in the 
initial response of the VPP based on communication latency and failures, forecasting 
errors, and inaccuracies in DER statuses.

3. In order to reach the desired output magnitude required for the reserve type, a real-time 
feedback control is employed to dynamically reallocate DER operations. This operation 
is extremely fast, but not optimized for economic dispatch of the DER resources. Instead, 
the real-time feedback control relies on heuristic rules to meet the magnitude requirement 
within the designated response time. 

4. A forecasting component provides long-term (24 hour) forecasts of demand response 
and renewable energy components to the market engine, and short term (<1-15 minute) 
forecasts to the optimization engine.

5. The secure communications system monitors and commands each of the DER through a 
range of DER gateways. These gateways will communicate using a variety of open and 
proprietary communication protocols. This functionality will be built into a Distributed 
Energy Resource Management System (DERMS), such as the EPRI DERMS75.

75 B. Seal, “Enterprise Integration of Distributed Energy Resources,” EPRI IntelliGrid Smart Grid Information 
Sharing Webcast, 22 Jan 2014.
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Figure 7: Secure Virtual Power Plant design for multiple operating reserves.

While there are variations in the requirements for each of the reserves depending on the 
ISO/RTO, a generalized set of requirements for each of the reserves is provided in Table 1. In 
addition to the applicable NERC standards, these will be the target metrics for each of the 
reserve functions in the project (based on ISO requirements). The regulating reserve time 
constraints and tertiary contingency reserve magnitude tolerance requirements are the most 
demanding for the VPP, so during the optimization and control design phase, those critical 
metrics will drive much of the design. An example of how the DER optimization and real-time 
feedback control operate together to meet these reserve metrics is shown in Figure 8. There are 
multiple steps to reach the target reserve magnitude: (A) is the response time needed to receive 
the reserve command signal and send the optimized DER commands through the DERMS 
system to the DERs; (B) depending on communication latency and DER response characteristics, 
the VPP output ramps up; multiple feedback iterations occur as the VPP works toward the target 
magnitude by (C) monitoring the DER and (D) issuing new commands; (E) eventually the VPP 
reaches a magnitude where the feedback control no longer issues DER commands but the 
controller monitors the output of the VPP to ensure it remains within the tolerance. If the VPP 
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magnitude approaches the tolerance limits the controller will adjust DER outputs accordingly. 
This deviation could result from renewable energy or demand response changes, storage or fuel 
depletion, or other unexpected events. During this final stage, the VPP can also reallocate DER 
commitments based on additional economic optimizations. 

Table 1: Reserve metrics for the virtual power plant.
Reserve Metric Regulating 

Reserve
Following 
Reserve

Secondary 
Contingency Reserve

Tertiary Contingency Reserve 
(based on Spinning Reserve)

Initial Response Time 2 sec 10 min 1 min 5 min
Magnitude Tolerance ±10% ±5% ±5% ±3%
Ramp Time 5 sec 10 min 5 min 10 min
Duration 30 min 60 min 60 min 60 min

Figure 8: The reserve metrics with example VPP output. 

The stochastic optimization will use Sandia’s Python-based Pyomo76 optimization framework in 
conjunction with a commercial solver. The optimization will be stochastic to make it robust to 
residual uncertainties in the forecasts of PV output, demand response availability, and other DER 
capacities. In particular, the residual uncertainty in the PV forecast will be minimized (ideally, 
less than 3%), but must accommodate forecast outliers where there are large deviations in 
predicted and actual renewable energy production and demand response. In practice, the 
optimization function could be performed in-house by a vertically integrated utility or it could be 

76 W.E. Hart, C.D. Laird, J.P. Watson, D.L. Woodruff, (2012) Pyomo: Optimization Modeling in Python. Springer, 
Berlin.
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contracted out to a VPP aggregator.  In either case, the goal is to operate the VPP in such a way 
to maximize profit while maintaining ANSI, IEEE, and NERC standards.  The profit generated 
by the VPP primarily comes from value streams corresponding to the multiple types of reserves 
listed above (regulating, following, secondary contingency, and tertiary contingency).  
Subtracted from the value streams are opportunity costs and other costs associated with added 
wear on the VPP components (for example, loss of battery life due to cycling). The decision 
variables in the command optimization include the PV inverter settings. Other decision variables 
are the commitments of the small generators and the charging and discharging rates for energy 
storage systems.  The commands may be structured in a hierarchical fashion corresponding to 
local, regional and global scales.  Experiments will determine the benefit of optimizing at various 
levels of electrical and geographical aggregation in comparison to a fully disaggregated 
optimization of all VPP components.

3.4 VPP Design for Distribution Voltage Regulation
Increasing photovoltaic (PV) penetration on distribution circuits can cause voltage swings that 
could compromise protection systems and damage customer equipment. Sandia National 
Laboratories and the Georgia Institute of Technology have been collaborating to develop a VPP 
construct capable of providing distribution voltage regulation. Our design consists of an open-
source, safe, cyber-secure, ADMS architecture that dispatches PV inverters and other power 
electronics-based DER to maintain voltage control, monitor and protect the distribution system 
and improve grid performance and reliability. This technology will ultimately result in lower 
capital expenditures for distribution circuits and introduce a breakthrough method for modeling, 
protecting, and managing these circuits in the future. As an example, our ADMS technology will 
allow utilities to defer—possibly indefinitely—fielding additional expensive voltage regulation 
equipment, like LTCs and capacitor banks. 

Scalable distribution system planning and real-time operations software dispatches resources that 
have DER grid-support functions to provide voltage regulation while maintaining distribution 
protection schemes—thereby optimizing the system operations over the planning horizon. 
SCADA sensors, other telemetry, and DERs feed data to a Distribution System Distributed 
Quasi-Dynamic State Estimator (DS-DQSE). A stochastic optimization engine, called Prescient77,
 in conjunction with a Quasi Static Time Series (QSTS) model, to optimize DER active and 
reactive power settings (P/Q) that maximize economic value while also minimizing the risk of 
exceeding the ANSI C84.1 Range A voltage limits and compromising protection systems. Since 
inverter grid-support functions (e.g., volt-var (VV), specified power factor (SPF), and active 
power curtailment) reduce active power and PV owner revenue, the control system will also co-
optimize the operations of the DERs to minimize lost production.78 Co-optimizing DER 
operations to meet multiple objectives is novel in distribution system management.

77 Sandia Develops Stochastic Production Cost Model Simulator for Electric Power Systems, press release. 2015. 
78 While there are some incentives (payment structures) in the wholesale markets for reactive power capacity and 
output, this is not typically the case at the distribution level. In the future, there may be new regulatory models that 
incentivize reactive power supply on feeders—in which case the optimization problem would be redesigned to 
account for this additional revenue stream. 
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Figure 9: The VPP construct for providing voltage regulation. 

The open-source software system will provide real-time protection, voltage regulation and 
visualization by integrating the following modules, shown in Figure 9: 

1. The Distribution System Distributed Quasi-Dynamic State Estimator (DS-DQSE)79 
takes feeder telemetry, DER and customer data, and generates the voltage and power 
flow estimation and validates the real-time model.80 This information is used to populate 
the QSTS simulations within the dispatch optimization engine. 

2. (Optional) the Estimation-Based Protection (EBP) detects faults and protects the system 
by isolating the faulted section of the distribution circuit by recloser/breaker/switching 
operations. The EBP solves the issues associated with the present protection schemes for 
distribution circuits with distributed resources. 

3. The probabilistic forecasting component provides short-term (e.g., 10 minute) forecasts 
of PV power output and load using recent system states and statistical irradiance 
modeling in conjunction with PV performance models. Uncertainty in forecasts is 
quantified using an empirical technique81 which refines uncertainty estimates using 
feeder telemetry data over time. 

4. A dispatch optimization engine determines the necessary P/Q power settings for groups 
of DERs to maintain voltage and distribution protection systems for the next time period 

79 R Huang, et al., IEEE Transactions on Smart Grid, Vol PP, Issue 99, pp 1-10, February 2016.
80 M. H. Nazari, et al., Trans. Power Systems, vol. 29, no. 6, pp. 2934-2942, Nov. 2014.
81  Y. Feng, I. Rios, S.M. Ryan, et al. “Toward scalable stochastic unit commitment. Part 1: load scenario 
generation,” Energy Systems, Volume 6, Issue 3, pp 309–329 September 2015. doi:10.1007/s12667-015-0146-8
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(5 minutes) value.  The optimizer evaluates circuit performance using QSTS simulations 
given the state estimate and the range of power and load forecasts to minimize the risk of 
voltage or protection violations while also maximizing economic value.   

5. The communications system uses a DER to communicate via internet channels to DER 
or aggregators that send signals to inverters. VV/SPF and active power curtailment 
commands will be issued to the DERs via TCP/IP using SunSpec, IEEE 2030.5, IEC 
61850-90-7, or revised IEEE Std. 1547 information models.  Cybersecurity is paramount 
to successful interoperable operations and the success of any DERMS system. 

PV-induced voltage fluctuations along distribution feeders are problematic but will be managed 
with the system. Present utility practice of regulating voltage with regulators at the start of the 
feeder and capacitors along the feeder are inadequate for feeder with high penetration of PVs and 
the variability of PVs causes wear and tear of voltage regulators, transformer load tap changers 
(LTCs), and switched capacitors.82 The number and the frequency of the PV fluctuations 
determine the impact on the number of tap changes and cap switches.  PV systems distributed 
along a feeder exhibit less variability than the same capacity of PV concentrated at a single 
location, and therefore less impact on the voltage regulators.83 To efficiently model the complex 
interactions between load and PV variability, quasi-static-time-series (QSTS) simulation tools 
are being developed.84  

By appropriately employing the advanced inverter functions in coordination with legacy voltage 
regulation equipment, the distribution system PV hosting capacity can be significantly increased.85  
PV inverter reactive power (e.g., volt-var) functions can control the voltage locally and provide 
some voltage regulation, reducing the number of voltage regulator tap changes and capacitor 
switches. The approach also determines the appropriate advanced inverter settings. Prior results 
show that poor volt-var settings can increase the number of tap changes significantly from the 
unity power factor case (>2 times the number of taps);86 whereas, by selecting the correct volt-
var curve, the number of tap changes can be reduced 20%.  Methods have been proposed to 
determine site specific inverter settings, but the settings are highly dependent on the specific 
scenario.87 

This VPP design determines reactive power settings for groupings of inverters through stochastic 
optimization. The state estimator produces a real-time model of a feeder from telemetry data 

82 H. Ravindra, M. O. Faruque, K. Schoder, M. Steurer, P. McLaren, and R. Meeker, “Dynamic interactions between distribution 
network voltage regulators for large and distributed PV plants,” in IEEE PES Transmission and Distribution Conference and 
Exposition (T&D), 2012.
83 S. Dhakal, P. Tripathi, and M. F. Baroughi, “Distributed versus Centralized Photovoltaic Plants in IEEE-34 Node Test Feeder 
for Reduced Power Fluctuation and Stress on Feeder Components,” in Conference on Power and Energy Systems, 2013.
84 R. Aghatehrani and A. Golnas, “Reactive power control of photovoltaic systems based on the voltage sensitivity analysis,” in 
IEEE Power and Energy Society General Meeting, 2012.
85 J. Seuss, M. J. Reno, R. J. Broderick, and S. Grijalva, “Improving Distribution Network PV Hosting Capacity via Smart 
Inverter Reactive Power Support,” IEEE PES General Meeting, Denver, CO, 2015.
86 S. R. Abate, T. E. McDermott, M. Rylander, and J. Smith, “Smart inverter settings for improving distribution 
feeder performance,” in IEEE Power & Energy Society General Meeting, 2015.
87 M. Rylander, M. J. Reno, J. E. Quiroz, F. Ding, H. Li, R. J. Broderick, et al., “Methods to Determine 
Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance,” in IEEE 
Photovoltaic Specialist Conference (PVSC), 2016.
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primarily from interoperable PV inverters and other DERs, but also from AMI, microPMUs, and 
traditional SCADA equipment as available from the utility partners.  Short-term forecasts of PV 
production and load, along with uncertainty in these forecasts, and the real-time feeder model are 
fed to the optimization engine. Within the engine, QSTS simulations estimate voltage and power 
flows to determine the P/Q settings that simultaneously minimize risk of voltage violations while 
also maximizing the economic value of PV generation. The reactive power will maintain the 
feeder voltage within a tight tolerance around the nominal grid voltage and the active power 
control will ensure that operating constraints are satisfied. In turn, this approach guarantees that 
protection functions will not be triggered due to wide variability of PV output and abnormal 
voltages and/or loading. 

The VPP design for voltage regulation is presented in a separate report.88 

88 A.P. Meliopoulos, G. Cokkinides, B. Xie, C. Zhong, J. Johnson, “Full State Feedback Control for Virtual Power Plants,” 
Sandia Technical Report, September 2017.
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4 VPP COMPONENTS 

Of the multiple VPP designs in Section 3, only the VPP Design for Energy and Reserve Markets 
was implemented in code.  For this VPP, the team created modular components which ran as 
multi-processing servers in a Python environment. The components of the VPP interacted to 
exchange pertinent information through a backend process. This section describes each of the 
VPP components in more detail as well as the experimental design, results, and validation taken 
for each VPP component prior to integration.

4.1 Forecasting
The forecast component was implemented in two servers: a long-term forecast engine supporting 
day-ahead unit commitment, and a short-term forecast engine supporting within-day unit 
dispatch. The long-term and short-term forecast engines differ in data requirements and forecast 
methods as illustrated in Figure 10. The forecast methods implemented for the VPP are less 
sophisticated (and less accurate) than state-of-art methods available in the renewable power 
industry. For the VPP demonstration, the selected methods suffice; the VPP structure permits 
replacement with alternative forecasts if desired.

Figure 10: Example forecast

4.1.1 Long-term forecasting
Commitment to day-ahead energy and reserve markets requires forecasts of energy and power 
production. The VPP forecast engine provides forecasts of hourly PV power levels for the next 
operating day by 1) obtaining pertinent weather forecasts from NOAA and 2) applying a 
weather-to-power transfer model. The NOAA North American Mesoscale (NAM) CONUS 
model provides gridded (approx. 12km x 12km) forecasts of irradiance, surface temperature and 
surface wind speeds at hourly resolution out to 84 hours, with model initiation at 00:00, 06:00, 
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12:00 and 18:00 daily. Forecasts are available approximately 3 hours after model initiation. The 
VPP code downloads the relevant data fields at specified geographic coordinates from the 
NOAA forecasts (available for most recent 7 days at nomads.ncep.noaa.gov). The download 
routine runs continuously to accumulate a long-duration archive of forecast values; considerable 
effort was made to enable the code to ride through forecast delays, network outages, download 
interruptions and corrupted data transfers. Historical forecast values are accumulated to 
characterize forecast error for the stochastic optimization that determines day-ahead unit 
commitments.

Table 2. Day-ahead forecast weather fields obtained from NOAA NAM
Quantity NOAA NAM field name
Irradiance (horizontal, W/m2) dswrfsfc
Air temperature (K) tmp2m
Surface wind (m/s) gustsfc

A weather-to-power transfer model is implemented using PV system modeling components from 
the pvlib-python toolbox89 which originated at Sandia National Laboratories and which provides 
reference implementations of commonly-used functions for solar power modeling. PV systems 
are defined by choosing modules and inverters, specifying geographic location, system topology, 
mounting and orientation. The pvlib-python components handle translation of forecast 
irradiance, air temperature and wind speed to PV power.

Figure 11 illustrates long-term forecast results. The challenge inherent in forecasting irradiance 
at a specific geographic location 24 hours in advance is evident in the Figure. The forecast 
irradiance (which correlates well with power) may reasonably anticipate the power trend (DOY 
91 and 93) or may miss widely (DOY 92 and 95); the wide scatter in the bottom panel of Figure 
11 indicates a significant change of a large forecast error in any particular hour. Forecast 
performance is summarized by a mean bias error of –32 kW (6% of capacity) mean absolute 
error of 92 kW (18% of capacity) and a root mean square error of 124 kW (25% of capacity) 
(error statistics exclude nighttime). Our results are similar to those reported elsewhere.90  Errors 
for irradiance forecasting using models tailored for solar power can be substantially less91; these 
forecasts can be purchased from a number of vendors. The NOAA product is the only publicly 
available forecast which includes hourly irradiance. 

89 Pvlib-python available at https://github.com/pvlib/pvlib-python
90 D. Larson, L. Nonnenmacher, C. Coimbra, Renewable Energy, vol. 91, pp. 11-20, 2016.
91 R. Perez et al., Solar Energy, vol. 94, pp. 305-326, 2013.
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Figure 11. Long-term forecasts of power for the PNM Prosperity 500 kW PV plant: 
forecast power, measured power and forecast clear-sky power (top), and comparison of 

forecast and measured power for Feb 2, 2017 through May 17, 2017.

4.1.2 Short-term forecasting
Dispatch of VPP resources to meet energy and reserve commitments must anticipate changes to 
the VPP power generation levels. Forecasts of PV power at, e.g., 15 minute intervals are made to 
the end of each operating day using a persistence technique; the VPP code includes capability to 
replace the persistence technique with autoregressive/moving average (ARMA) models (with or 
without differencing) fitted on rolling windows, or to download hourly forecasts from NOAA’s 
High Resolution Rapid Refresh (HRRR) model and employ the weather-to-power transfer model 
used in the long-term forecast engine.

For PV power forecasts, persistence was implemented on the clear-sky power index, i.e., the 
power of the PV system normalized by the PV system power under clear sky conditions. 
Historical PV power was obtained from system meters; for the VPP demonstration, data for the 
PNM Prosperity 500 kW system was available through an OSIsoft® PI historian that collected 
field measurements from the PNM site. PV power, air temperature and wind speed data were 
downloaded on a continual basis from the historian.  For the short-term persistence forecast at 
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15-minute resolution, the most recent hour of power data was converted to clear-sky power 
index, and the forecast was made by assuming the clear-sky power index persists into the future. 
The clear-sky power index was multiplied by the forecast clear-sky power to obtain the power 
forecast.  The clear-sky power was forecast by applying the weather-to-power transfer model to 
forecasts of the clear-sky irradiance, air temperature and wind speed; clear-sky irradiance on the 
PV system plane was calculated using models in the pvlib-python toolbox, air temperature and 
wind speed were assumed to persist by using the last hour’s measured values.

Figure 12 displays example time series of short-term forecasts and compares forecast and 
measured power from the 500 kW PNM Prosperity PV system. The lag inherent in persistence 
forecasting is evident when comparing time series of forecast and actual values (e.g., DOY 91): a 
significant change in irradiance results in a corresponding change in power output, which is 
repeated by the forecast at a later time. This lag largely would be absent from forecasts produced 
by fitting an ARIMA model to rolling windows; the error could also be corrected by applying a 
model output statistics (MOS) technique, in which a statistical model is formed to predict 
forecast error, and the predicted error is subtracted from the forecast. Despite the lag, forecast 
performance is reasonably clustered about the 1:1 line in the bottom panel. Forecast accuracy is 
summarized by: mean bias error of –15 kW, mean absolute error of 39 kW, and root mean square 
error of 64 kW.
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Figure 12. Short-term forecasts of power for the PNM Prosperity 500 kW PV plant: 
forecast power, measured power and forecast clear-sky power (top), and comparison of 

forecast and measured power for Feb 2, 2017 through May 17, 2017.

4.2 Optimization
The day-ahead scheduling and real-time operations are two separate optimization routines that 
are solved on a rolling horizon basis. These optimization problems were developed in Sandia’s 
Python-based Pyomo mathematical programming framework, and then solved with the 
commercial solver Gurobi. The Prescient software tool92 is leveraged for both optimization 
problems to generate scenarios that quantify historical forecast errors in the long-term and short-
term forecasting engines. 

Both optimization routines can be classified as two-stage stochastic programs. The variables that 
represent decisions that are made before the uncertainty is revealed are known as first-stage 
variables, and decisions variables that represent decisions that are made once the uncertainty is 
revealed are known as second-stage. In a two-stage stochastic program, an optimal policy is 

92 A. Staid, J.-P. Watson, Roger J.-B. Wets, and D. L. Woodruff, “Generating short-term probabilistic wind power 
scenarios via nonparametric forecast error density estimators.” Wind Energy, 2017.
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solved for all possible future realizations of the uncertainty parameters. We assume that the VPP 
is an infra-marginal resource participating in the market, and therefore does not impact the 
market prices.

4.2.1 Quantifying Uncertainty through Scenario Generation
The VPP must operate under uncertainty in the forecast variability that, when not appropriately 
handled, may result in an offer strategy that yields sub-optimal outcomes. The sub-optimal 
outcomes in the long-term effect the economic viability of the VPP. Therefore, to account for 
forecast variability, we incorporate uncertainty modeling into our stochastic programming. A 
common practice is to approximate a probability distribution of an input parameter by a set of 
scenarios with associated probabilities of occurrence. For example, a random parameter  𝜃𝜔,𝜔 ∈ Ω

where  indices the set of scenarios . Each realization of   is associated with a probability of 𝜔 Ω 𝜃𝜔

occurrence , defined as:Pr (𝜔)

,Pr (𝜔) = 𝑃𝑟(𝜔|𝜃 = 𝜃𝜔)

where .
∑

𝜔 ∈ Ω

Pr (𝜔) = 1

The software tool Prescient constructs a set of relevant scenarios that capture forecast errors by 
including low-probability, but not extremely unlikely, events for more reliable and resilient 
operations. In particular, we construct probabilistic scenarios that capture the range of 
intermittent generation and market pricing behaviors that have been historically observed. 
Prescient characterizes forecast error based on nonparametric density estimates of historical 
forecast errors through epi-spline basis functions. The scenarios are generated in such a way that 
they capture known relationships present in solar photovoltaic and pricing patterns, such as 
temporal dependencies, as well as biases and correlation in the forecasts. These scenarios along 
with their estimated probabilities of occurrence provide a set of possible future outcomes over 
which the dispatcher can optimize. Therefore, the optimal decisions in the stochastic program is 
based on data available at the time that the decisions are made, and not on future observations. 
The basic idea is that the stochastic optimization enables the VPP operator to be prepared for all 
possible future realizations of the unknown parameters. 

4.2.2 Day-Ahead Energy and Reserve Market Stochastic Co-optimization 
In the day-ahead, a two-stage stochastic optimization problem is solved to determine optimal 
energy and reserve schedules for the subsequent operating day that maximizes the expected 
profit,

,
𝐸[Π𝜔] = ∑

𝜔 ∈ Ω

Pr (𝜔)Π𝜔

across all scenarios  in the day-ahead market, where the first-stage variables include: 𝜔 ∈ Ω

(1) The power schedule for the VPP, , which can be a withdrawal , injection 𝑝𝑠
𝑡 (𝑝𝑠

𝑡 < 0)
, or no participation  for each time period  of the subsequent operating (𝑝𝑠

𝑡 > 0) (𝑝𝑠
𝑡 = 0) 𝑡 ∈ 𝑇
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day. Note that the power schedule is not for each VPP subresource but is an aggregated 
schedule for the VPP to offer;

(2) The reserve capacity for the VPP, , which can be a positive capacity , or no �̅�𝑠
𝑡 (�̅�𝑠

𝑡 > 0)
participation  for each time period  of the subsequent operating day. Note that (�̅�𝑠

𝑡 = 0) 𝑡 ∈ 𝑇
the reserve capacity is not for each VPP subresource but is an aggregated capacity for the 
VPP to offer; 

(3) The binary commitment variable, , that indicates whether thermal unit  is online 𝑏𝑡,𝑔 𝑔 ∈ 𝐺
for each time period . Note that the binary commitment variables are used for all VPP 𝑡 ∈ 𝑇
subresources that have start-up and/or no-load costs.

The second-stage variables indicate the power production, and the reserve capacity, , 𝑝𝜔,𝑡,𝑢, �̅� 𝑠
𝜔,𝑡,𝑢

of all VPP subresources  for each time period  in each scenario . For storage 𝑢 ∈ 𝑈 𝑡 ∈ 𝑇 𝜔 ∈ Ω

devices, the energy level, , is also defined as a second-stage variable. As a result, the 𝑒𝜔,𝑡,𝑢

scheduled power and reserve for the VPP as a whole are scenario-independent and therefore are 
feasible for all future realizations of scenarios , whereas the power output of each VPP 𝜔 ∈ Ω
subresource depends on the realization of each scenario .𝜔 ∈ Ω

Figure 13. Illustration of profit variability per scenario, where the expected profit is the 
same for both the high risk and low risk uncertainty sets.

In the proposed stochastic optimization approach, the VPP operator has the option to handle the 
risk associated with profit variability (see Figure 13) due to the inherent uncertainty in day-ahead 
energy prices, , day-ahead reserve prices, , and intermittent resource generation, , for 𝜆𝐷𝐴

𝜔,𝑡 𝜆 𝑆𝑃
𝜔,𝑡 �̅� 𝐹

𝜔, 𝑡, 𝑖

the solar photovoltaic subresources  in the VPP. By incorporating a multi-objective 𝑖 ∈ 𝐼
conditional value-at-risk (CVaR) optimization approach, the VPP operator can determine 
optimal schedules that result in low-risk operating strategies. 

We explicitly incorporate this through an -confidence level CVaR approach. This approach 𝛼
balances the trade-off between profits and risk, enabling the VPP to adaptively schedule and 
operate as a more risk-averse or more risk-neutral market participant. The  denotes the 𝛼 ∈ (0,1)
confidence level and for an equivalent  used for VaR as shown in Figure 14, the CVaR is the 𝛼
mean of the tail distribution exceeding VaR, i.e., the average loss exceeding the VaR value.
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Figure 14. Multi-objective function of the VPP Operator maximizes both the expected 
profits and the CVaR of the profits.

Therefore the VPP scheduling model is formulated as a multi-objective stochastic optimization 
problem, with objective function weight  (e.g.,  is expected profit maximization 𝛽 ∈ [0,1] 𝛽 = 0
only), where the operator maximizes the expected profit and the CVaR of the expected profit 
over an uncertainty set of scenarios  in:𝜔 ∈ Ω

max (1 ‒ 𝛽) ∑
𝜔 ∈ Ω

Pr (𝜔)Π𝜔 + 𝛽𝐶𝑉𝑎𝑅 ‒ Φ

where, 

Π𝜔 = ∑
𝑡 ∈ 𝑇

(𝜆𝐷𝐴
𝜔,𝑡 𝑝

𝑠
𝑡 + 𝜆 𝑆𝑃

𝜔,𝑡 �̅�
𝑠
𝑡) ‒ ∑

𝑢 ∈ 𝑈

𝑓𝑢(𝑝𝜔,𝑡,𝑢,�̅� 𝑠
𝜔,𝑡,𝑢) VPP Profits per Scenario

𝐶𝑉𝑎𝑅 = 𝑉𝑎𝑅 ‒ (1 ‒ 𝛼) ‒ 1 ∑
𝜔 ∈ Ω

Pr (𝜔)𝜎𝜔

Φ =  ∑
𝜔 ∈ Ω

Pr (𝜔)∑
𝑡 ∈ 𝑇

𝜆𝐷𝐴
𝜔,𝑡 (𝜖 ‒ 1𝑝 +

𝜔, 𝑡 + 𝜖𝑝 ‒
𝜔,𝑡) Penalty function

subject to
𝑉𝑎𝑅 ‒ Π𝜔 ≤ 𝜎𝜔 ∀𝜔 ∈ Ω CVaR Formulation
0 ≤ 𝜎𝜔 ∀𝜔 ∈ Ω Nonnegativity

𝑝𝑠
𝑡 = ∑

𝑢 ∈ 𝑈

𝑝𝜔,𝑡,𝑢 ‒ 𝑝 +
𝜔, 𝑡 + 𝑝 ‒

𝜔,𝑡 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇 VPP Energy Schedule Offer

�̅�𝑠
𝑡 ≤ ∑

𝑢 ∈ 𝑈

�̅� 𝑠
𝜔,𝑡,𝑢 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇 VPP Reserve Capacity Offer

and VPP subresource constraints See Appendix A

Note that the subresource constraints are specified in Appendix A. The above problem is risk-
constrained when the VPP operator specifies , and is risk-neutral otherwise. In other words, 𝛽 > 0
the weighting parameter  enforces a trade-off between profit and risk such that the higher the  𝛽
value of , the more risk-averse the VPP operator becomes. 𝛽
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The profit calculation   per scenario  incorporates the forecasted prices  and   and Π𝜔 𝜔 ∈ Ω 𝜆𝐷𝐴
𝜔,𝑡 𝜆 𝑆𝑃

𝜔,𝑡 

the CVaR calculation quantifies the losses associated with the lower tail of the profit distribution, 
where  is an auxiliary continuous nonnegative variable defined as the maximum between zero 𝜎𝜔

and the difference between the VaR and the profit of a scenario . The penalty function  is to 𝜔 Φ

disincentivize the VPP operator from waiting to sell ( ) or buy ( ) in the real-time balancing 𝑝 +
𝜔, 𝑡 𝑝 ‒

𝜔, 𝑡

market by creating a loss of  or , respectively, where . 𝜆𝐷𝐴
𝜔,𝑡 (1 ‒ 𝜖 ‒ 1) 𝜆𝐷𝐴

𝜔,𝑡 (𝜖 ‒ 1) 𝜖 > 1

4.2.3 VPP DER Dispatch
For real-time operations, a two-stage stochastic optimization problem is solved to determine 
optimal VPP subresource (DER) setpoints that maximizes the expected profit,

,
𝐸[Π𝜔] = ∑

𝜔 ∈ Ω

Pr (𝜔)Π𝜔

across all scenarios  and meets the specified energy schedule, , and reserve capacity, , 𝜔 ∈ Ω 𝑝𝑠 ⋆
𝑡 �̅�𝑠 ⋆

𝑡

which are the accepted offers of the VPP operator from the day-ahead market for all time periods 
 in the subsequent 24-hour timeframe (where  and ).  This approach may 𝑡 ∈ 𝑇 1 ≤ 𝑡 ≤ |𝑇| |𝑇| = 24

also be used for real-time balancing markets in addition to meeting the day-ahead energy and/or 
reserve market bids. 

The first-stage variables correspond to decisions of the VPP operator in the current time period, 
, while the second-stage variables correspond to the future time periods  𝜏 ∈ 𝑇 �̃�≔{𝜏 + 1,…,𝜏 + |𝑇|}

where . Therefore, the first-stage variables are non-anticipative across all scenarios  �̃� ⊂ 𝑇 𝜔 ∈ Ω
and include: 

(1) The power setpoint, ;𝑝𝜔,𝜏,𝑢

(2) The reserve capacity, ; and �̅�𝜔,𝜏,𝑢

(3) The reserve output setpoint, 𝑟𝜔,𝜏,𝑢

for all VPP subresources  in the current time period ; in other words, each VPP subresource 𝑢 ∈ 𝑈 𝜏
must maintain the same power and reserve capability in the current time period regardless of the 
future realization in the uncertainties, as enforced by the “non-anticipative constraint set” below. 
The second-stage variables indicate the power and reserve capability for each VPP subresource 
by scenario  for future time periods .𝜔 ∈ Ω 𝑡 ∈ �̃�

In the proposed stochastic optimization approach, the VPP operator has the option to handle the 
risk associated with profit variability (see Figure 13) due to the inherent uncertainty in real-time 
energy prices, , and intermittent resource generation, , for the solar photovoltaic 𝜆𝐷𝐴

𝜔,𝑡 �̅� 𝐹
𝜔, 𝑡, 𝑖

subresources  in the VPP. By incorporating a multi-objective conditional value-at-risk 𝑖 ∈ 𝐼
(CVaR) optimization approach, the VPP operator can determine optimal subresource setpoints 
for the current time period that result in low-risk operating strategies for future time periods. 

We explicitly incorporate this through an -confidence level CVaR approach. This approach 𝛼
balances the trade-off between profits and risk, enabling the VPP to adaptively schedule and 
operate as a more risk-averse or more risk-neutral market participant. The  denotes the 𝛼 ∈ (0,1)
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confidence level and for an equivalent  used for VaR as shown in Figure 14, the CVaR is the 𝛼
mean of the tail distribution exceeding VaR, i.e., the average loss exceeding the VaR value.

Therefore the VPP dispatch model is formulated as a multi-objective stochastic optimization 
problem, with objective function weight  (e.g.,  is expected profit maximization 𝛽 ∈ [0,1] 𝛽 = 0
only), where the operator maximizes the expected profit and the CVaR of the expected profit 
(see Section 4.2.2) over an uncertainty set of scenarios  in:𝜔 ∈ Ω

max (1 ‒ 𝛽) ∑
𝜔 ∈ Ω

Pr (𝜔)Π𝜔 + 𝛽𝐶𝑉𝑎𝑅 ‒ Φ

where
Π𝜔 = ∑

 𝑡 ∈ 𝑇,𝑢 ∈ 𝑈
[𝜆 𝑅𝑇

𝜔,𝑡 (𝑝𝜔,𝑡,𝑢 + 𝑟𝜔,𝑡,𝑢) ‒ 𝑓𝑒
𝑢(𝑝𝜔,𝑡,𝑢 + 𝑟𝜔,𝑡,𝑢)] VPP Profits per Scenario

𝐶𝑉𝑎𝑅 = 𝑉𝑎𝑅 ‒ (1 ‒ 𝛼) ‒ 1 ∑
𝜔 ∈ Ω

Pr (𝜔)𝜎𝜔

Φ =  ∑
𝜔 ∈ Ω

Pr (𝜔)∑
𝑡 ∈ 𝑇

𝜙(𝑝𝜀 +
𝜔, 𝑡 + 𝑟 𝜀

𝜔,𝑡) Penalty function

subject to
𝑉𝑎𝑅 ‒ Π𝜔 ≤ 𝜎𝜔 ∀𝜔 ∈ Ω CVaR Formulation
0 ≤ 𝜎𝜔 ∀𝜔 ∈ Ω Nonnegativity

𝑝𝑠 ⋆
𝑡 = ∑

𝑢 ∈ 𝑈

𝑝𝜔,𝑡,𝑢 + 𝑝𝜀 +
𝜔, 𝑡 ‒ 𝑝𝜀 ‒

𝜔,𝑡 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇 VPP Energy Dispatch

�̅�𝑠 ⋆
𝑡 ‒ 𝑟 𝜀

𝜔,𝑡 ≤ ∑
𝑢 ∈ 𝑈

�̅� 𝑠
𝜔,𝑡,𝑢 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇 VPP Reserve Capacity

0 ≤ 𝑟 𝜀
𝜔,𝑡 ≤ �̅�𝑠 ⋆

𝑡 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇 Reserve Penalty Bound
0 ≤ 𝑟𝜔,𝑡,𝑢 ≤ �̅� 𝑠

𝜔,𝑡,𝑢 ∀𝜔 ∈ Ω,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈 VPP Subresource Reserve Output Limits
𝑝1,𝜏,𝑢 = … = 𝑝|Ω|,𝜏,𝑢
�̅� 𝑠

1,𝜏,𝑢 = … = �̅� 𝑠
|Ω|,𝜏,𝑢

𝑟1,𝜏,𝑢 = … = 𝑟|Ω|,𝜏,𝑢
𝑝𝜀 +

1,𝜏 = … = 𝑝 𝜀 +
|Ω|,𝜏

𝑝𝜀 ‒
1,𝜏 = … = 𝑝 𝜀 ‒

|Ω|,𝜏

∀𝑢 ∈ 𝑈
∀𝑢 ∈ 𝑈
∀𝑢 ∈ 𝑈

Non-anticipative Constraint Set

and VPP subresource constraints See Appendix A

Note that the subresource constraints are specified in Appendix A. Similar to the stochastic 
scheduling problem, the stochastic dispatch problem is risk-constrained when the VPP operator 
specifies , and is risk-neutral otherwise. The above problem is solved on a rolling horizon so 𝛽 > 0
that each time period in the forward 24-hour horizon becomes the current time period . 𝜏
Therefore, model references to  refers to actual operations for the VPP subresources in the 𝜏 ‒ 1
previous time period, which accounts for deviations of the controller from the setpoint 
determined by the dispatcher.

4.3 DER Controller
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VPP optimization has been the subject of many studies. The EU sponsored projects to create a 
VPP composed of fuel cell DER93 and the FENIX project investigated (a) technical VPPs 
consisting of DER in one geographical region that accounted for the local power network (e.g., 
voltage regulation) and (b) commercial VPPs designed to bid into wholesale and other markets94. 
Many researchers have studied VPP bidding mechanisms and market interactions. Centralized 
bidding strategies for VPPs were investigated extensively95,96,97; and a detailed optimization 
formulation to optimize the day-ahead thermal and electrical scheduling of large scale VPPs has 
been proposed98. Once the VPP has contracted power delivery, a control system must issue 
commands to DER to produce the desired aggregate power. To do this, a few architectures have 
been proposed, including direct, hierarchical and distributed management architectures for VPPs99 
and decentralized multi-agent based techniques for VPP operations100,101. However, there is little 
emphasis in the literature on the design and implementation of real-time feedback control for 
VPP operations. The Sandia VPP team investigated three different control techniques: distributed 
control, hybrid control, and centralized control.  Ultimately the team employed a centralized 
controller for the Energy and Reserve Market VPP demonstration. 

4.3.1 Distributed Control 
Distributed control of DER devices has been a widely-accepted concept for voltage and 
frequency regulation using the volt-var and frequency-watt functions. For instance, there has 
been prior research using FW functions to provide grid-services to Hawaii102, 103, 104. 
Unfortunately, DER autonomous functions cannot provide time-sensitive ancillary services alone 
because they do not optimize the entire system for specific dispatch power levels. The system 

93 A. Dauensteiner, “European virtual fuel cell power plant,” Management Summary Report, Feb 2007.
94 D. Pudjianto, C. Ramsay, G. Strbac, and M. Durstewitz, “The virtual power plant: Enabling integration of 
distributed generation and demand,” FENIX Bulletin 2, Feb 2008.
95 E. Mashhour and S. Moghaddas-Tafreshi, “Bidding strategy of virtual power plant for participating in energy and 
spinning reserve markets - Part I: Problem formulation,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 
949–956, May 2011.
96 E. Mashhour and S. Moghaddas-Tafreshi, “Bidding strategy of virtual power plant for participating in energy and 
spinning reserve markets - Part II: Numerical analysis,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 
957–964, May 2011.
97 D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system integration of distributed energy 
resources,” Renewable Power Generation, IET, vol. 1, no. 1, pp. 10–16, March 2007.
98 M. Giuntoli and D. Poli, “Optimized thermal and electrical scheduling of a large scale virtual power plant in the 
presence of energy storages,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 942–955, June 2013.
99 A. Raab, et al., “Virtual power plant control concepts with electric vehicles,” 16th International Conference 
Intelligent System Application to Power Systems (ISAP), pp. 1–6, Sept 2011.
100 M. Vasirani, R. Kota, R. Cavalcante, S. Ossowski, and N. Jennings, “An agent-based approach to virtual power 
plants of wind power generators and electric vehicles,” Smart Grid, IEEE Transactions on, vol. 4, no. 3, pp. 1314–
1322, Sept 2013.
101 H. Yang, D. Yi, J. Zhao, and Z. Dong, “Distributed optimal dispatch of virtual power plant via limited 
communication,” Power Systems, IEEE Transactions on, vol. 28, no. 3, pp. 3511–3512, Aug 2013.
102 M. El-Khatib, J. Neely, and J. Johnson, “Evaluation of Fast-Frequency Response Functions in High Penetration 
Isolated Power Systems,” IEEE PVSC, Washington, DC, 25-30 June, 2017.
103 J. Neely, J. Johnson, J. Delhotal, S. Gonzalez, M. Lave, Evaluation of PV Frequency-Watt Function for Fast 
Frequency Reserves, IEEE Applied Power Electronics Conference (APEC), Long Beach, CA, March 20-24, 2016.
104 J. Johnson, J. Neely, J. Delhotal, M. Lave, “Photovoltaic Frequency-Watt Curve Design for Frequency 
Regulation and Fast Contingency Reserves,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1611-1618, Nov. 
2016. doi:10.1109/JPHOTOV.2016.2598275
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response from autonomous DER functions are not deterministic a priori without detailed 
information about the current operating conditions, such as available PV power (e.g., from 
pyranometers), which will not be available for smaller DER installations. As such, it is 
recommended to use hybrid control when operating a VPP with variable energy resources. 

4.3.2 Hybrid Control 
A hybrid control structure that provides extremely fast response to grid disturbances by 
combining autonomous, decentralized, agent-based control with a centralized controller. When 
there is a grid disturbance, a portion of the RE/DER units respond to changes in grid frequency 
with pre-programmed autonomous control. The power change from these devices will be 
monitored to determine the initial VPP aggregate response. The remainder of the reserve 
magnitude will be made up through DR units and a centralized feedback controller for larger 
DER resources that have higher bandwidth communications. Conceptually, two primary 
considerations factor into the decision to issue the DER centralized or decentralized control 
commands: communication capabilities and local control capabilities. Larger DER are can 
generally be controlled directly whereas smaller DER—which have slower communication rates, 
less availability, and less bandwidth–will not receive the commands in time to act on the signal.  
For instance, many microinverters have 15-minute control update rates in the United States, so 
these devices are not suitable for centralized control.  However, to use decentralized control of 
DER, the devices must have autonomous controls, such as droop control, frequency-watt or volt-
var functions.

Figure 15. Hybrid VPP controller in which some DER are controlled directly and other 
DER are controlled using decentralized, autonomous controls.

For example, to provide synthetic inertia, centralized control schemes cannot update residential 
and commercial systems through Internet channels and receive feedback within the tight 2 
second response time, and decentralized control cannot guarantee the aggregate reserve 
magnitude target or variability tolerance. In that case a novel two-step, hybrid method, should be 
used where thousands of distributed energy resources (DERs) are programmed with FW curves 
and centralized control mechanisms fine-tune the VPP response with fast DER.  Every 15 
minutes a stochastic optimization could be performed based on renewable generation and 
demand forecasts to set the appropriate distributed autonomous controls, initialize the necessary 
resources (e.g., charge batteries), and prepare commands for larger, faster DERs in the event of a 
contingency. Once the reserve is called upon, autonomous functions adjust the inverter-based 
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DER active power outputs based on the grid frequency and the real-time VPP dispatcher sends 
the optimized command set to the centrally-controlled, quicker resources (e.g., utility-scale 
DER) that have larger communication bandwidth. In the second step, the VPP would measure all 
the DER outputs and adjusts larger DER assets to meet the reserve magnitude by accounting for 
variations in autonomous DER responses, renewable forecasting errors, and communication 
failures.105 PV, wind, energy storage systems and other inverter-based DER are pre-programmed 
with autonomous FW functionality to meet the initial response time requirement. Demand 
response could be controlled with price signal. 

While there are variations in the requirements for each reserve type depending on the ISO/RTO106,
 the ARPA-E NODES metrics for frequency response reserves are provided in Table 3. In order 
to meet these metrics, the distributed and centralized control operate together as shown by the 
letters in Figure 16: 
(A) After the fault, the DERs programmed with autonomous frequency-watt functions or 

droop controls ramp up their output power; 
(B) Depending on communication latency and DER response characteristics, the VPP will 

measure or predict the response of the distributed controllers based on the frequency 
deviation; 

(C) The VPP issues commands to the DERs operating under the centralized control and 
monitors their output;

(D) The VPP ensures it remains within the tolerance. If the VPP magnitude approaches the 
tolerance limits the centralized controller will adjust DER outputs accordingly. This 
deviation could result from renewable energy or demand response changes, storage or fuel 
depletion, or other unexpected events. 

Table 3: Frequency Response Reserve metrics for the virtual power plant.
Reserve Metric Target Value
Initial Response Time  < 2 sec
Reserve Magnitude Target (RMT, % of load) > 2% 
Reserve Magnitude Variability Tolerance (RMVT) < ±5%
Ramp Time < 8 sec
Duration > 30 sec
Availability > 95%
Cascaded Contingency Support > 2

105 Note that in many cases, communications to these DER will be slow and the response may need to be estimated 
until DER measurement data is received. 
106 J. F. Ellison, L.S. Tesfatsion, V.W. Loose, R. H. Byrne, “Project Report: A Survey of Operating Reserve Markets 
in U.S. ISO/RTO-managed Electric Energy Regions,” Sandia Technical Report, SAND2012-1000, Sept. 2012.
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Figure 16. The reserve metrics with example VPP output. 

4.3.3 Centralized Control 
Ultimately, the VPP in this project used a centralized control algorithm. The main goal of the 
VPP control system is to ensure that the real-time output of the VPP is maintained within an 
acceptable error margin. This control task is challenging for several reasons. First, the presence 
of renewable energy DERs in the VPP cause the VPP output to fluctuate. Second, the VPP 
controller should compensate in real-time for the loss of any particular DER (communication 
failures, DER disconnection, etc.) or the inability of any DER to attain its reference power 
output. Third, due to the geographical diversity of DERs in the VPP, a communication network 
must connect the VPP controller to the DERs through public internet channels. Unlike many 
previous VPP implementations, DERs included in this work extend down to the residential level 
(e.g., rooftop microinverters on homes). The presence of the internet-based communication 
network introduces additional difficulties to the design of the control system because of 
communication latencies and data loss. In this section, we present a VPP controller design 
utilizing PID and proportional controllers to provide fast, reliable aggregate power production.107

The VPP controller receives optimal dispatch setpoints for each DER from the optimization 
routine at a specified interval (e.g. every 15 minutes). From this starting operating condition, the 
VPP controller is responsible for keeping the total output of the VPP within an acceptable error 
margin from the VPP reference power defined by:

107 Also presented in M. El-Khatib, J. Johnson, and D. Schoenwald, “Virtual Power Plant Feedback Control Design 
for Fast and Reliable Energy Market and Contingency Reserve Dispatch,” IEEE PVSC, Washington, DC, 25-30 
June, 2017.



52

VPPref = E(t) + α(t)R(t) (1)

where E is the energy market commitment, R is the reserve commitment, and  is a binary 
variable indicating if the reserve is required at time, t. 

The design of VPP controllers is challenging for several reasons. First, VPPs aggregate 
heterogeneous DERs with wide ranges of ramp rates which makes it hard to tune the controller 
and ensure stable response. Second, the controller must compensate for small variations in the 
VPP output due to the variability of RE DER resources and respond to changes in VPP output 
due to unexpected DER tripping or communication failure. Third, reliance on communication 
network introduces significant latencies and a probability of data loss which could destabilize the 
controller. 

Figure 17 shows a schematic overview of the proposed VPP controller structure. The optimizer 
(Optimization Block) resolves for the optimal DER dispatch settings every 15 minutes to account 
for changes in short-term forecast and other DER status changes—e.g., loss of DER 
communications. These new setpoints are issued to the VPP controller to re-adjust DER 
reference powers. The proposed controller consists of the Feedback Controller and the Re-
dispatch Processor as detailed below. 

Figure 17. VPP controller consisting of feedback control and re-dispatch processor.

4.3.3.1 Feedback Controller
The feedback controller is responsible for maintaining the VPP output at the target level by 
compensating for changes in DERs outputs. The proposed controller structure is shown in Figure 
18 for a VPP with three DERs—though this architecture can be expanded to any number of 
devices. The controller uses overall VPP error to derive the output of different DERs. Due to the 
wide range of DER ramp rates, only one DER is equipped with PID controller and the rest of the 
DERs are equipped with proportional gain control to avoid output ringing. 

The DER equipped with PID controller is designated the swing DER of the VPP and is 
responsible for smoothing the output of the VPP and eliminating any steady state errors. 
Typically, a large storage-based DER should be used as a swing DER to ensure adequate 
controller response because of its fast ramp ability. 
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Figure 18. VPP feedback controller structure for 3 DER.

4.3.3.2 Re-dispatch Processor
During real-time operation, for large VPP errors, DERs may drift significantly from their 
reference powers determined by the VPP optimizer. As a result, the VPP operates in a 
suboptimal economical state. One possible solution to this problem is to actively re-adjust DERs 
reference powers in real-time to ensure that the VPP output is restored using the most 
economical DERs. Due to time constraints of real-time operation, it is hard to formulate and 
solve a complete optimization problem in the re-dispatch processor. However, the initial DER 
reference powers from the optimizer represents the most economical solution using DER cost 
curves to meet the VPP bids. Therefore, we propose to dispatch DERs proportional to their initial 
reference powers. In other words, if Perror is the difference between the VPP reference and actual 
powers—due to communication failures, renewable energy reductions, or tripping of DER k—
then for each available DER i in the VPP, the reference output power will be updated as follows.  

(2)

(3)

where, Pi, initial is the initial output power of DER i before the contingency Pm, initial denote the 
output power of DER m.  Note that, once updated reference powers are received from the 
optimization engine at the beginning of the subsequent optimization period, DERs will follow 
the new reference powers and the re-dispatch processor will be reset. 

4.3.3.3 Control Simulations 
In order to study the impact of different factors on the performance of the VPP controller, a 
simulated collection of DERs was created based on the equipment located at Mesa del Sol 
(MdS), Public Service Company of New Mexico (PNM) Prosperity Site, and Sandia’s 
Distributed Energy Technologies Laboratory (DETL) in Albuquerque. The equipment at MdS 
and Prosperity sites was controlled previously for PV smoothing108,109 so this collection of 
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devices could form a VPP with the correct control structures. The DER included in the 
simulations is listed in Table 4 with their size, dispatchable power levels, and swing settings. In 
order to create a stable VPP controller first the swing controller settings were determined and 
then the gain was selected for the non-swing DER. 

Table 4: DER VPP Parameters.
DER Size (kW) Dispatchable  Power (kW) Swing?

Miller Cycle Genset at MdS 240 200 No
Diesel Genset at DETL 250 90 No
Battery at Prosperity Site 500 300 Yes
PV at Prosperity Site 500 500 No
Battery at MdS 163 140 No
Fuel cell at MdS 80 40 No
Rooftop PV at MdS 100 100 No
Eight Inverters at DETL 8 x 3 24 No

4.3.3.4 Controller Tuning 
The swing PID controller for the above VPP was tuned using the Ziegler–Nichols method. The 
VPP scenario in Table 5 was simulated, shown in Figure 19, to illustrate the basic operation of 
the VPP controller with different controller parameters.  For each setpoint command issued to 
the DERs, a delay and probabatility of packet loss were simulated. The simulation time step was 
set to 0.01 s but the control setpoints were only recalculated and re-issued every 0.2 seconds to 
represent the communication delay in sending and receiving power data from the equipment. Fig. 
3 shows the performance of the VPP controller which quickly reaches the VPP power reference, 
but with different overshoot levels and settling times. The final swing control parameters were 
chosen to be Kp = 0.7, Ki = 1.0, and Kd = 0. 

108 J. Johnson, A. Ellis, A. Denda, K. Morino, T. Shinji, T. Ogata, M. Tadokoro, “PV Output Smoothing using a 
Battery and Natural Gas Engine-Generator,” 39th IEEE Photovoltaic Specialists Conference, Tampa Bay, Florida, 
16-21 Jun, 2013.
109 J. Johnson, K. Morino, A. Denda, J. Hawkins, B. Arellano, T. Ogata, T. Shinji, M. Tadokoro, A. Ellis, 
“Experimental Comparison of PV-Smoothing Controllers using Distributed Generators,” Sandia Technical Report 
SAND2014-1546, Feb 2014.
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Figure 19. Swing PID parameters influence on the response of the VPP. 

Table 5. VPP Operation Scenario

Time (s) Energy Market Power 
Commitment (kW)

Reserve Market Power 
Commitment (kW)

Reserve 
Request, 

0 500 200 0
10 400 200 0
20 400 200 1

Once the swing controller PID settings were selected, the gain for the non-swing DER was 
determined. All the PV systems included in Table I were simulated by replaying one of seven 
24-hour AC power 1-second datasets recorded and scaled from the 500 kW Prosperity Site PV 
plant. The effect of Kp gain on the VPP response is shown in Figure 20. The final non-swing 
DER gain was selected to be 0.1. 
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Figure 20: VPP response for two non-swing gains. 

A. Impact of Communication Rate and Delay
The scenario from Table 5 was repeated with different communication rates.  The control rate is 
the speed at which new setpoints are issued to the DER and represents the aggregate time to 
measure the DER outputs and issue new setpoints.  Communications to physical DER devices at 
DETL takes approximately 0.2 sec, which does not significantly influence the stability or 
effectiveness of the VPP controller, as shown in Figure 21. It is clear from Figure 22 that the 
slower the controller rate is, the more oscillations will appear in the swing DER response as well 
at the VPP power.  

The impact of different communication delays on the VPP response was studied as well. After 
control information is issued to the DER, the device does not respond for a period of time while 
the data packet is routed through the communication network. Depending on the transport media, 
communication protocol, and network topology this time could be quite short (< 10 ms) or 
relatively long (seconds). In the past, this was a challenge in the MdS and Prosperity PV 
smoothing project110 and was ultimately a challenge for the VPP, as described below. 
Simulations of 100 and 150 ms delays showed the VPP controller was robust to some network 

110 J. Johnson, A. Ellis, A. Denda, K. Morino, T. Shinji, T. Ogata, M. Tadokoro, “PV Output Smoothing using a 
Battery and Natural Gas Engine-Generator,” 39th IEEE Photovoltaic Specialists Conference, Tampa Bay, Florida, 
16-21 Jun, 2013.
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latency.  The delay in the DER output from network delay is seen when the VPP target changes 
in Figure 23.

Figure 21. VPP Output under different controller rates.

Figure 22. Swing DER output under different controller rates.
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Figure 23. Influence of DER Delay on VPP output.

4.4 VPP Cyber Security
Residential-, commercial-, and utility-scale DERs are configured with VPP-optimized advanced 
grid functions (AGFs) settings to provide ancillary services via real and reactive power flows to 
the grid.  Although supervisory control and data acquisition (SCADA) communications are 
generally proprietary stovepipe systems running on dedicated communication channels with a 
dependence on perimeter defenses, a fundamental challenge of this project is securing VPP 
communications running over public and home-area networks. The VPP construct necessitates 
control communications to distribution-level devices at residential and commercial facilities over 
wired and wireless Internet channels.  The inherent unsecure nature of these communications 
increases the risk of an adversary potentially leveraging a VPP to control large quantities of grid-
connected generators, ignore or spoof SCADA signals, manipulate bids on energy exchanges, or 
instigate grid instabilities. This cyber security aspects of this project established broadly-
applicable VPP network architectures and intrusion detections systems for secure dispatch of 
interoperability commands. Consequently, novel methods for detecting, mitigating, and 
recovering from cyber attacks must be developed.  Techniques of identifying and removing 
compromised/unauthorized DERs, segmenting DERs into resource pools to minimize damage in 
the event of successful comprise, and safeguarding the VPP from mass compromise were 
developed for the VPP framework.  
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There were three different cyber security concepts investigated for the VPP project.  The first 
was an intrusion detection system (IDS) that correlated DER information and measurements with 
other power system data sources to determine when there was a high probability of end device 
manipulation. The second was an IDS and classification technique using SCADA data which 
could identify equipment whose VPP control manipulated by an adversary. Novel data 
correlations between network cyber information and VPP power and control data were 
developed to more quickly and accurately detect and mitigate compromised devices. The third 
was a segmentation or enclaving technique to minimize the common-mode vulnerabilities of the 
system by using cyber-secure network architectures. New segmentation strategies specific to 
VPP functions and devices were designed to cleave the VPP into resource pools that are more 
resistant to widespread corruption by minimizing common-mode vulnerabilities.

4.4.1 Intrusion Detection System 
The IDS system uses data from DER systems and other sources of real-time data (uPMUs, 
SCADA, AMI, etc.) to determine when there is suspicious data from the DER.  This would 
indicate DER data is being spoofed on the DER is being controlled by some other entity. The 
cyber security overlay checks only for cyber security indicators (not equipment problems).  The 
IDS would be an auxiliary data-requesting agent on the OPC server since it reaches all DER 
enclaves.  This data can be harvested from Modbus or any other DER protocol using Bro. 

Specific plans:
 For simplicity, data interpretation is limited to MODBUS, TCP, IP, and ARP
 The system can sense and parse directionality for SuiteLink and SMB
 The system can also detect messaging that are not MODBUS, ARP, SuiteLink, or SMB
 BroBounds may be used to set up “out of bounds” conditions for MODBUS messages
 Use exiting Archimedes analytics: “moving average” and “statistical outlier”
 May add custom analytics with Python
 Eventually the system may learn what is reasonable, but the first set will be 

deterministic
 Tests may be solely cyber, if no physical data is involved, or cyber-physical otherwise

Types of cyber security checking:
 Identical: is the data the precisely the same as other data?
 Consistent: is the data, or its implications, consistent with other data (within some pre-

programmed error thresholds)?
 Appropriate: is the data within its permissible envelope? 
 Reasonable: is the data, or its implications, consistent with the expected system 

operational character?  (Operation references values \& error thresholds are 
preprogrammed and conditional.)

Potential implementations (first cut):
 Identical

o Check if MODBUS message (control or status) is the same (or even exists) 
from to/from OPC and DER 
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o Check if ARP requests resolve the same as previous ones
   Consistent

o check if current DER power from MODBUS agrees with last power based on 
frequency change and DER FW curve, e.g. unlikely.

o check if DER voltage times current is the same as its reported apparent power
o check if multiple DER voltage measurements at a bus are basically identical

 Appropriate 
o check if DER output (or other parameters) is greater than nameplate (plus a 

margin)
o check if DER reports capability values different than installed settings
o check if a non-BESS DER is absorbing power for any significant interval
o Check if BESS DER average energy is slightly positive, on average
o check if DER ramp rate is within device capability
o monitor for location-specific un-allowed protocols on network segments 

(should be only MODBUS, SuiteLink, or SMB 
o check if MODBUS coils/registers are known
o monitor for un-allowed network management messaging (routing, spanning 

tree, terminal connections, etc.)
o check for MODBUS directionality on status and command messaging
o after setup time, check for new Ethernet MAC addresses

 Reasonable
o monitor for un-allowed post-installation changes to settings (like networking, 

maximum power, or ride-through settings)
o check if solar output is measurable at midnight
o check if DER are given conflicting FW curves
o check if slope of FW curve change exceeds expected rate (or is inverted)  
o check if volume of FW settings changes exceeds expected rate 
o check if timing of DER FW settings changes from established patters 
o check if multiple DER are disconnected within a small time window 
o check if a host is alive, based on communications within a reasonable window 

4.4.2 Cyber Attack Identification and Classification
The objective of the cyber classification tool was to leverage high-resolution and high-quality 
measurement data of the physical power grid to identifying manipulations of DER controls. It 
was observed that for certain attacks on the VPP controllers (such as disconnectivity and changes 
of setpoint), the power system voltage and frequency would respond differently. This enabled the 
creation of an intrusion detection system (IDS) by correlating the measured voltage and 
frequency with the signature response for each type of attack. We first introduce our developed 
dynamic case for the development of our IDS module. Second, we will discuss a list of intrusion 
scenarios and analyze the corresponding effects to the physical power system. Finally, we 
demonstrate the possibility of identifying the intrusion scenarios using high sampling rate 
measurements of the physical power grid.
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4.4.2.1 Creation of a dynamic simulation case with DER devices
The MdS-Prosperity-DETL VPP was used as the basis for the analysis. Base on the type and 
capacity information, the Illini 42-bus test case in PowerWorld (PW)111 was modified to 
incorporate these DER devices. This was a 345/138 kV transmission system with transient 
stability simulation capability. Note that for compatibility, the original DER capacities were 
scaled by a factor of approximately 1000 to match the Illini 42-bus ratings. The DER placement 
and capacity information is listed in Table 6. 

Table 6: DER sizes and locations in the transmission simulation
Bus Number Capacity Resource Type Finalized Capacity PW Model

Apple345 500 kW BESS 565 MW CBEST
Dolphin345 500 kW Inverter 565 MW PVD1

Oak345 240 kW GENSET 271.2 MW GENROU
Steel138 25 kW DR 28.25 MW GENROU

Viking345 100 kW Inverter 113 MW PVD1
Viking345 80 kW Fuel Cell 90.4 MW PVD1

Owl138 163 kW BESS 183.19 MW CBEST

Oak345

Five 3 kW PVs
3 kW PV
24 kW PV

Total = 42 kW

Inverter 47.46 MW PVD1

A Python client for this power simulation was also created to be used as the real-time 
transmission model for hardware-in-the-loop simulations using PW Dynamic Studio server. With 
the PW Dynamic Studio connectivity, dynamic simulations in a HIL environment with actual 
DER devices can be completed.

4.4.2.2 Intrusion actions and the corresponding physical effects
Once an attacker gains access to a single DER or the centralized controller, the adversary may 
manipulate active or reactive power of the generators to disrupt a normal power system 
operation. The attacker could possibly perform the following actions on a generator: 
disconnect/reconnect, change active power setpoint, ramp up/ramp down active power, change 
voltage setpoint. 

To evaluate the physical effects of such attacks, simulations of the transient response of the 
Illini42 case under different attacks on the distributed energy resources (DERs) were performed 
and voltage and frequency measurements at all the buses were measured. The following attack 
scenarios are considered:

- Attack 1: Disconnect the battery at bus Apple345 
- Attack 2: Disconnect the solar farm at bus Viking345 
- Attack 3: Disconnect the wind farm at bus Prairie345 

111 Illinois Center for a Smarter Electric Grid (ICSEG), “Illini 42 Tornado,” http://icseg.iti.illinois.edu/illini-42-
tornado/ 

http://icseg.iti.illinois.edu/illini-42-tornado/
http://icseg.iti.illinois.edu/illini-42-tornado/
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- Attack 4: Ramp up active power of the wind farm at bus Prairie345: the active power is 
commanded to ramp from 500 MW to 1000 MW in 1 second

- Attack 5: Ramp down active power of the wind farm at bus Prairie345: the active power 
is commanded to ramp from 500 MW down to 100 MW in 1 second

- Attack 6: Change active power setpoint: the setpoint at the wind farm at bus Prairie345 
from 500 MW to 100 MW

- Attack 7: Change reactive setpoint: the reactive setpoint at the wind farm at bus 
Prairie345 is commanded to change the bus voltage to 96% of the nominal value 

For the simplicity of visualization, we show the voltage and frequency profiles in time for the 
Prairie345 bus in Figure 25 and Figure 26, and discuss the physical effects on the system. 

- Battery attack (Attack 1): The battery at bus Apple 345 supplies 0 MW and 44.62 
MVAr. When it is disconnected under the scenario Attack 1, the system voltage 
immediately drops, e.g., the voltage profile at Prairie345 bus is illustrated by the dash-red 
line in Figure 24. Because the battery does not provide active power to the system, once 
disconnected, the system frequency does not vary significantly (red-dash line in Figure 
25).

- Solar farm attack (Attack 2): The solar farm at bus Viking345 provides 113 MW and 0 
MVAr. When it is disconnected, the physical impacts are mostly on the system 
frequency, while the voltage is mildly affected, as shown by the dash-blue lines in Figure 
24 and Figure 25.

- Wind farm attacks (Attacks 3, 4, 5, 6, 7): The wind farm at bus Prarie345 provides 500 
MW and 250 MVAr.

o Attack 3: Once disconnected, both voltage and frequency varied. The voltage at 
bus Prairie345 drops immediately after the disconnection and recovers thanks to 
the control mechanism embedded to the system. However, the voltage level could 
not recover to the pre-attack level, as shown by the dash-blue line in Figure 24. 
Similarly, the frequency immediately drops and then settles to a post-attack level, 
as shown by the dash-blue line in Figure 25.

o Attack 4 and Attack 5: the active power is ramped up/ down. The physical effect 
is mostly on the system frequency, as shown by red-dash-dot and green-dash-dot 
lines in Figure 25.

o Attack 6: the active power set point is changed. Like the Attack 4 and Attack 5, the 
physical effect is mostly on the frequency, as shown by the blue-dash-dot in 
Figure 25. Compare to the Attack 5, the system settles to the same steady state 
values in both voltage and frequency. However, right after the attack, the rate of 
change in both voltage and frequency is higher compared to the Attack 5.

o Attack 7: the voltage set point is changed. The physical effect of this attack is 
mostly observed on the voltage measurement, as shown by the red-dot line in 
Figure 24. The rate of change in voltage is slower than the cases where reactive 
power is suddenly cut-off such as in the Attack 1 and Attack 3.

In general, after an attack, the voltage and frequency settle to a constant level for all the 
scenarios. From this point on, an attack could not be identified. 
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4.4.2.3 Identifying the intrusion actions using high sample rate measurements
Using high sampling rate data acquisition system, by comparing the high-resolution 
measurements, one could identify and classify an attack incident. Shortly after an attack incident, 
voltage and frequency evolves differently for different attack scenarios. For example, for the 
attacks that disconnects reactive power source, voltage drops immediately. If attacker changes 
the voltage setpoint, voltage varies gradually. In addition, the dynamics of the attacked target 
also play a role in the system response. Those patterns are illustrated in Figure 24 and Figure 25 
and mentioned in the foregoing discussion.  
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Figure 24: Voltage profile at bus Prairie345 under different attack scenarios.
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Figure 25: Frequency profile at bus Prairie345 under different attack scenarios.

By comparing the voltage and frequency profiles with the known signatures, the VPP could 
classify the DER that was attacked. One method of comparison is based on correlation index. 
The correlation index is calculated from the normalized measurements because the type of attack 
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is the question of interest. By normalizing the measurement, the type of attack could be 
identified regardless of its magnitude. Given the two sampled measurements  and , with 𝑓[𝑘] 𝑔[𝑘]

 to be the time index, starting when an attack occurs and ending when the system has 𝑘 = 1…𝑁
come back to a steady-state condition. The normalized measurements are calculated as:

�̅�[𝑘] =  
𝑓[𝑘] ‒ 𝑓𝑠𝑠

𝑚𝑎𝑥(|𝑓[𝑘] ‒ 𝑓𝑠𝑠|)

where  is the steady-state value of ,  is the maximum value operator, and  is the absolute 𝑓𝑠𝑠 𝑓 𝑚𝑎𝑥 |.|
value operator. The steady-state value could be calculated by average several measurement 
samples once the system has got into a steady-state condition. The measurement  is 𝑔[𝑘]
normalized using the same method. We use the correlation index for the measurements  and  𝑓 𝑔
defined as follow:
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𝑁

∑
𝑖 = 1

(�̅�[𝑖] ‒ 𝑓0)( �̅�[𝑖] ‒ 𝑔0)

𝑁

∑
𝑖 = 1

(�̅�[𝑖] ‒ 𝑓0)2
𝑁

∑
𝑖 = 1

(�̅�[𝑖] ‒ 𝑔0)2

where ,   are the average values of  and .
𝑓0 =  

1
𝑁

𝑁

∑
𝑖 = 1

�̅�[𝑖] 𝑔0 =  
1
𝑁

𝑁

∑
𝑖 = 1

�̅�[𝑖]
𝑓 𝑔

The correlation indices for voltage and frequency measurements at bus Prairie345 under the 
listed attack scenarios are illustrated in Figure 26 and Figure 27. Higher correlation coefficient 
indicates high similarity between the two measurements. If the value is 1, the two normalized 
measurements are identical. If the value is -1, they are opposite but could have the same nature, 
e.g., the attacks of increasing and decreasing the same set point by the same amount. If the value 
is 0, the two attacks are likely to be different in nature, e.g., an attack that changes voltage 
setpoint versus the one that changes active power setpoint.
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Figure 26: Voltage correlation indices for the measurements at bus Prairie345.
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Figure 27: Frequency correlation indices the measurements at bus Prairie 345.

Combining the voltage and frequency correlation indices, the VPP could detect, differentiate, 
and identify the attack type. Once the typical measurements for attack scenarios are studied in 
simulation a priori and a classification tool is developed (e.g., based on Bayesian networks, 
neural networks, etc.) the VPP could classify new attack event. For example, from the voltage 
correlation indices, the Attack 1 could be clearly differentiated from the Attack 6 and Attack 7 
because the correlation indices at position (1,6) and (1,7) are small. There could be other 
scenarios that the voltage correlation indices alone could not clearly differentiate the two attacks. 
In this case, using additional indices, e.g., frequency correlation indices, could help. For 
example, the voltage correlation indices between the Attack 1 and Attack 2 is high, which 
indicates that these two attacks could be similar. However, the corresponding frequency 
correlation index is low. Which helps predicting that those two are different.  Indeed, they are 
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different because the Attack 1 affect the reactive power while the Attack 2 is on the active 
power.

4.4.2.4 Outlook
We have shown the capability of simulating the physical effects of a cyber-attack on a power 
system and the concept of using transient measurements to classify an attack. From the 
simulation data, different attacks could result in different transient effects on voltage and 
frequency (and other) measurements. Observing those signatures, the VPP could differentiate 
several types of attack. The similarity between the two measurements is quantified by a 
correlation index so that the classification process could be automated. Using this index for 
different types of measurement (e.g., voltage, frequency, etc.), we have conceptually shown the 
possibility of differentiating the attacks but an automated classification system is necessary to 
quickly identify the DER or DERs which are no longer controlled by the VPP or trustworthy; at 
which point the controller can be updated to compensate for these losses in the VPP DER pool. 

For future developments, a focus on developing a more complete and realistic attack scenario, a 
more versatile similarity measure, and a methodology to use measurement at more than one bus 
to perform attack classification should be considered. Currently, the attack scenarios only 
consider a single action. However, an attacker is not limited to only a single action in a real 
attack. A more versatile similarity measure is necessary to identify the attacks that could happen 
in various time scale. For example, with the active power ramping attack, the attacker could 
select the ramp rate to create different attacks. The defined correlation index would identify 
those attacks to be very different although they are from the same nature. Further, using a 
moving average or only a single time stamp of data would accelerate the cyber attack 
classification speed.  Lastly, although looking at a single bus (Prairie345 in the example above) 
gives sufficient information to classify the given attack, more information may be required to 
classify more complicated attack schemes. A systematic way to pick measurements at multiple 
buses to identify the attacks would be valuable in this case.

4.4.3 DER Enclaving 
To provide resilient grid services disruptions to the DER network must be isolated. Selecting the 
appropriate cybersecurity architectures is essential to maximizing control network security and 
minimize the impact of an adversary.  Through the use of firewall rules, enclaves can be created 
which segment the DER assets.  If an adversary gains access to one of these enclaves through 
physical or remote hacking, they are only capable of changing the settings on the devices that are 
isolated into that enclave.  Therefore, by segmenting the VPP assets into a large enough 
collection of enclaves, the VPP will be robust to cyber security attacks of this nature. However, 
this feature comes at the cost of increased network complexity, maintenance, and hardware. 

For this project, three different network topologies were designed:
- Flat network with one enclave
- Segmented network with DERs randomly placed in X enclaves. 
- Critically segmented network with the aggregate nameplate capacity of the DER in the 

enclaves not exceeding 20% of the total VPP capacity. 
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Cyber-secure communications and resilient controls were created for the example system 
described previously that includes DERs at the Distributed Energy Technologies Laboratory 
(DETL), PNM Prosperity Site, and Mesa Del Sol (MdS) Aperture Center by aggregating 
renewable and traditional energy DERs.  The critical segmented network is shown in Figure 28. 

Figure 28: Example Cyber Reference Architecture which enclaves DER devices to 
minimize common-mode vulnerabilities. In this configuration if an adversary gains 

access to one of the enclaves, they cannot control the utility/aggregator power devices in 
the other enclaves—reducing the risk of widespread grid failures.
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5 VPP SOFTWARE STRUCTURE, TIMING, AND VISUALIZATION

The VPP system was constructed as a multi-processing Python environment in which each of the 
VPP components could execute asynchronously. The design and integration of the software 
components to create a functioning VPP system ultimately accounted for a large portion of the 
project effort.

5.1 Software Architecture 
A master VPP Python script initiated the VPP operations.  This script contained a command line 
interface (CLI) that:

 provided lists for available CLI commands
 displayed the python version, compiler, and other computer information
 launched the VPP by creating a collection of DER objects contained in memory (lists of 

PV, fuel cell, gensets, batteries and demand response assets) and then initiating the 
multiprocessing manager. The manager created a number of multiprocessing servers 
which read/wrote to the DER objects. These servers represented the components in 
Section 4:

o Long-Term Forecasting Server: Generates a 24-hour forecast with 1 hour 
intervals for the VPP resources based on NOAA weather data and saves this 
information for each PV inverter.

o Short-Term Forecasting Server: Generates a forecast for the VPP resources 
based on persistence or autoregressive moving average (ARMA) model and 
saves this information for each PV inverter. 

o Bid Server: Co-optimizes the VPP into to maximize profit by bidding into 
energy and ancillary service markets (e.g., tertiary contingency reserve 
market).

o Cybersecurity Server: Determines which DER objects cannot be trusted to 
deliver power based on data correlations between their reported status and 
other data streams (AMI data, SCADA data, etc.). 

o Dispatch Server: Determines the DER dispatch schedule to meet the 
energy/ancillary service commitment(s) while minimizing costs to the VPP. 
These setpoints are used by the control server as the initial power setting for 
the individual DER PID controllers.

o Control Server: Quickly moves the VPP aggregate power to the power 
commitment using PID controllers for the DERs and a swing DER (typically a 
fast battery) to make up the difference.

o Report Server: Sampled DER power and plotted the output (redacted with 
export server). 

o Export Server: Sends DER data to the Elasticsearch database for visualization 
within Kibana. 

 displayed server status (e.g., if the processes are alive or dead)
 changed the target VPP power target manually for debugging purposes
 killed the servers
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Each of the servers had the ability to get DER and VPP information from the DER objects 
through read and write functions.  In cases where the server needed to write data to the DER 
objects, it would lock the DER shared memory objects to prevent other servers from overwriting 
this information. In general, this method was found to effectively exchange data between the 
servers so long as the control server which issued commands to the DER devices did so 
internally and the export server only dumped information back to Elasticsearch every 100+ 
control loop iterations.  

5.1.1 Shared DER Objects
Information about the state of the VPP system was exchanged through shared memory elements 
representing each of the DER devices.  These DER instances contained generic information that 
all DER assets had, such as:

 DER name
 Initialization time and date
 Simulation or real DER Boolean
 Nominal voltage and frequency
 Nameplate power, reactive power, apparent power
 Ramp rate
 Geographic information (Latitude and Longitude) 
 DER communications information

o Communication type, TCP/IP, Serial/Modbus RTU, etc. 
o IP address, IP port, timeout
o Communication ID, parity, baud rate, timeout

 Expected communication delay
 Target power 
 Control parameters (kp, ki, kd), swing boolean
 Export server queues so that data was not lost during control operations
 Bid optimization parameters (interval, optimization horizon, etc.)
 Dispatch optimization parameters (interval, optimization horizon, etc.)
 Bid optimization schedule for VPP for energy and reserve
 Dispatch schedule for VPP
 Dispatch schedule for DER
 Cyber security warning flags (Booleans)

The DER devices also included methods for:
 Getting VPP target and DER target for the bid (energy and reserve) and dispatch for 

any time, t, or current time from the Pandas dataframe
 Setting control settings 
 Setting DER power using absolute values or per unit 

There were also specific attributes and methods provided for each of the DER types:
 PV 

o Available power
o Forecasting inputs
 Inverter model
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 Module information
 Number of inverters
 Site info
 Historical data
o Forecasting outputs
 Long term forecast dataframe
 Short term forecast dataframe
o Methods for getting forecast data from the dataframes for given times
o For simulated PV devices, an ‘actual’ 1-second PV output profile was 

generated for 24 hours using scaled power from historical data from a utility 
PV installation. One of five days of historical data could be selected for the PV 
profile to represent sunny, cloudy, or partly cloudy conditions. 

o Methods were created to read and write to SunSpec-compliant PV devices
 DER grid-support functions and settings via pysunspec

 Engine-Generators (Gensets)
o Cost curve pieces for the optimization
o Initial operating condition (on/off)
o Minimum up/down time
o Start up and shut down ramp limits
o Fuel costs

 Battery
o Energy capacity
o State-of-charge (SOC)
o Operating SOC limits
o Cost curve pieces for the optimization

 Fuel Cell
o Cost curve pieces for the optimization
o Initial operating condition (on/off)
o Minimum up/down time
o Start up and shut down ramp limits
o Fuel costs

 Demand Response
o Hot water heater
 Temperature
 Mass
 Thermal conductivity, k
 Duty cycle
 Available power
 Forecasting method (incomplete)
 1st order thermal model
 Set temperature method
 Read temperature

The DER Object Class also included a number of methods which provided:
 aggregate power of the VPP
 aggregate nameplate power of all the DER
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 aggregate forecast power of all the DER
 projected power of the VPP over a given time horizon
 initialization of the DER fleet
 pre-solved dispatch schedule (for debugging)

Each of the servers then interacted with these DER devices to change their attributes and call on 
the methods to perform their operations. 

5.1.2 Long-Term PV Forecasting Server
The long-term PV forecast server completed the following actions: 

1. long_server creates an instance of LongFcstObj for each PV system to contain data and 
methods for forecasting the system’s performance. 

2. The local archive of NOAA NAM forecasts is updated using a script 
GetNOAAWeatherForecast_multisite_VPP.py, which requires python 2.7

3. long_server.forecast() loops over the list of LongFcstObj performing the following:
a. measured data for the system is retrieved from the PI server using methods and 

functions in PI_access_tools.py
b. clear-sky power is computed and forecast
c. missing data are interpolated and forecasts missing from previous periods are 

generated
d. forecasts for the next period are generated
e. forecasts are written to csv files, to each DER’s object, and for visualization.

4. After each PV system’s forecast is updated, a forecast of aggregate power is compiled 
and written by summing over the forecasts for each PV system.

5.1.3 Short-Term PV Forecasting Server
The short-term server operated using the following sequence: 

1. short_server creates an instance of FcstObj for each PV system to contain data and 
methods for forecasting the system’s performance. 

2. short_server.forecast() loops over the list of FcstObj performing the following:
a. measured data for the system is retrieved from the PI server using methods and 

functions in PI_access_tools.py
b. clear-sky power is computed and forecast
c. missing data are interpolated and forecasts missing from previous periods are 

generated
d. forecasts for the next period are generated
e. forecasts are written to csv files and to each DER’s object.

3. After each PV system’s forecast is updated, a forecast of aggregate power is compiled 
and written by summing over the forecasts for each PV system.

5.1.4 Bid Server
The purpose of the Bid Server is to establish an optimal balance between energy production and 
ancillary tertiary reserve that maximizes profit for the following day.  This server is designed to 
reach a solution for the day-ahead bulk energy and reserve levels for the VPP before 6:00 p.m. 
every day (or a custom time determined by when the operating authority requires day-ahead 
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bids).  The outcome of this server are energy and reserve levels for the entire VPP for each hour 
of the following day without regard to the specific schedule of individual assets.

The inputs for the bid server are:
1. projected hourly energy and reserve prices (from NYISO)
2. historical data on reserve events (from PJM)
3. historical power production and forecasts for stochastic assets (wind and solar)
4. day-ahead forecasts for stochastic assets
5. detailed operational information for thermal generation and battery assets

The basic process of the bid server is to:
1. formulate scenarios for stochastic assets using Sandia’s Prescient software
2. co-optimize the energy/reserve levels for each scenario and blend using CVaR

5.1.4.1 Scenarios Generation for Stochastic Resources
The incorporation of variable and intermittent resources (i.e., wind and solar) and energy storage 
is the most challenging aspect of VPP optimization.  Variable resources, by their nature, are not 
baseload power and may provide more or less power than is forecasted.  This difference in power 
production vs. forecasted power can either be stochastic (due to cloud cover) or systematic (due 
to deficiencies in the forecasting algorithm or the physical asset).  Sandia has been investigating 
the optimization of stochastic resources for years and has developed a software program, 
Prescient112, which is designed to develop weighted scenarios for power production of stochastic 
resources based on historical vs. forecasted power production (Figure 29).

112 Sandia Press Release, “Sandia Develops Stochastic Production Cost Model Simulator for Electric Power 
Systems,” 13 Nov 2015. http://energy.sandia.gov/sandia-develops-stochastic-production-cost-model-simulator-for-
electric-power-systems/

http://energy.sandia.gov/sandia-develops-stochastic-production-cost-model-simulator-for-electric-power-systems/
http://energy.sandia.gov/sandia-develops-stochastic-production-cost-model-simulator-for-electric-power-systems/
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Figure 29: Scenarios for stochastic PV resource (black trace) based on forecasted power 
(red trace)

To generate scenarios for stochastic resources in the DER resource list (§5.1.1), Prescient 
requires three basic pieces of information: a history of hourly forecasted power production, a 
corresponding history of actual power production, and an upper bound of the power production 
(known as the diurnal pattern). To run Prescient on day N-1 for scenarios on day N, the bid 
server provides historical power production, forecasted power production, and upper bound 
power production for days 0 through N-1 and a forecasted power production for day N. The 
longer the history of forecasted and actual power production, the more accurately Prescient can 
construct scenarios which accurately reproduce the error distribution.  

Prescient then compares the historical hourly error between the forecasted power production and 
actual power production to determine the error distribution for any given hour. Prescient samples 
this distribution to develop individual scenarios for each stochastic resource. The greater the 
historical record of an individual asset, the more accurate the error distribution, especially 
regarding tail-end probabilities.

The historical forecasted power production from the forecast server (§5.1.2) is collected and 
appended daily in a csv file. This historical record for each stochastic resource grows, and 
becomes a more accurate representation of the stochastic error distributions, the longer an asset 
participates in the VPP.  In addition, this csv file contains historical power production for each 
asset.  For the purposes of the LDRD, this historical data was collected daily from the Mesa del 
Sol PI server and then scaled to the size of each individual asset.  Both the historical power 
production data as well as the forecast server produce time stamps in GMT, while Prescient 
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requires local time stamps.  In the VPP software, the forecast server time is converted to local 
time before running Prescient.

The scenario generation is bounded by a maximum hourly power production for each asset, 
known as the diurnal pattern.  This upper bound is computed by the forecast server based on the 
estimated clear-sky power production for a given asset.

With the required information, the bid server creates a bash script for calling Prescient as well as 
the file locations for the information Prescient provides.  Upon executing the bash file, Prescient 
develops Pyomo-compliant files for the different projected scenarios for each stochastic asset.  
The total number of scenarios scales quickly, as As, where A is the number of asses and s is the 
number of scenarios per asset.  Therefore, computing time/resource can quickly become 
constrained as the number of stochastic assets or number of scenarios per assets increases.  

In order to limit computing resources, the bid server aggregates all VPP stochastic resources into 
a single asset. In the bid server process this results in relatively little loss in granularity, since the 
bid server is unconcerned with individual schedules and only concerned with power availability 
of the bulk VPP.  Additionally, this allows for a far greater number of scenarios to be generated 
than would be possible if the assets were considered individually.

5.1.4.2 Forecasted Energy/Reserve Prices
To determine the profit from energy/reserve, it is necessary to have estimates for prices for 
tomorrow’s energy or reserve.  While price forecasting is a research topic unto itself and out of 
the scope of this LDRD, some ISO’s do provide limited estimates of day-ahead energy and 
reserve prices. In order to get a basic input for tomorrow’s prices, we scrape NYISO estimated 
future prices.  

When the bid server is executed, the day ahead market locational marginal price (LMP) for 
energy and the ancillary service prices are pulled from NYISO’s Market Information System.  
These prices are posted daily at roughly 11AM Eastern Time.  Since LMP requires a location, 
the bid server pulls the information for the NYISO “CENTRL” zone, which encompasses the 
central New York region.

5.1.4.3 Thermal/Battery Resource Information
Thermal and battery resources are characterized by a variety of parameters (e.g. startup rate, 
maximum power, SOC) that bound their abilities to provide power.  The formalization of these 
parameters is included in Appendix A.  This information is communicated to the optimization 
engine via a skeleton file.  This skeleton file is created automatically from the resources listed in 
the shared DER objects and noted as able to participate in VPP functionality (e.g. marked as 
available by the cybersecurity server).

5.1.4.4 Optimization
The bid optimization formalism is fully described in (§4.2.2). Briefly, the optimization of the bid 
server utilizes the Pyomo stochastic optimization toolbox for python to solve the optimal 
energy/reserve levels for a given hour over a 48-hour horizon subject to CVaR considerations.  
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These energy/reserve levels act as VPP targets the dispatch server and control server are required 
to allot to subresources (DER) in the VPP.

5.1.5 Dispatch Server
The dispatch server is an optimization server that partitions the required energy/reserve levels to 
targets for all VPP subresources to minimize cost.  This optimizer is executed every 15 minutes 
and hands the optimal energy/reserve setpoints for each resource to the control server.  In 
between 15 minute runs of the dispatch server, the control server may deviate from the optimal 
setpoint path while maintaining the target power.

The dispatch server has the same basic framework as the bid server.  It utilizes Prescient to 
develop scenarios followed by Pyomo to optimize the solution.  The integral difference between 
the two optimizations is the time-step and horizon.  The dispatch server operates in 15-minute 
time steps (compared to 1 hour for the bid server) and a 24 horizon (as compared to a 48-hour 
bid server horizon) to prepare devices for the future requirements.  Additionally, since the 
purpose of the dispatch server is to allot energy/reserve setpoint targets to each subresource so 
that the aggregate energy/reserve power levels for the VPP are met (while minimizing the cost of 
providing energy/reserve), the dispatch server does not aggregate stochastic (renewable) 
subresources.

The prescient software automatically utilizes 1 hour time-steps for the creation of scenarios, 
regardless of the time-step of the input forecasts.  Therefore, in order to optimize at 15-minute 
time-steps, the 1-hour scenarios from Prescient are interpolated into 15-minute increments. 
Similar time-step scaling in required for the non-stochastic (thermal or battery) resource 
parameters provided by the DER resource list.

Once the inputs are scaled at 15-minute increments, the Pyomo optimization is carried out to 
determine the ideal setpoints for each subresource for each 15-minute increment.  The setpoint 
for the following 15-minute increment is sent to the control server for control of each resource.

5.1.6 Control Server
The control server operated rapidly to maintain the VPP near the target power via the following 
sequence:

1. The optimal DER power setpoints were collected from the DER object shared memory.
2. The PID control parameters were configured for the DER and the swing DER.
3. Start loop:

a. For all simulated DER devices, the output power was calculated from available 
PV power in the historical dataset for the give time of day

b. For each DER, the power setpoint is calculated from the PID control parameters 
and the VPP error

i. For physical devices, this value was issued to the DER through the 
communications network and the DER power was measured

ii. For simulated devices:
1. the setpoint is sent to a network simulation tool that delayed the 

signal and dropped packets with a given probability, and 
2. the ramp rate of the DER was also simulated
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3. power limit constraints were also preserved 
c. Every X times through the controller, data would be printed to the screen and sent 

to the DER objects shared memory so it could reach the export server. 
d. Every Y times through the controller, the optimal DER power setpoints were 

gathered from the DER object shared memory.
4. Return to loop start at Step 3. 

5.1.7 Export Server
The export server was created to interface with Elastic Stack (Elasticsearch, Logstash, and 
Kibana) to provide real-time visualization tools to monitor the behavior of the system.  DER data 
that was exported to the Elasticsearch database included:

 DER names
 DER power
 DER nameplate power
 DER available power
 DER energy dispatch setpoint
 DER reserve dispatch setpoint
 DER compromised from cyber security warning flag
 Forecasts for all PV systems
 VPP target power
 VPP actual power
 VPP power error
 VPP nameplate power
 VPP available power
 VPP reserve target
 VPP energy target
 VPP reserve bid
 Meta data including step time, export server size, DER list size

Example visualization screenshots are presented in Section 5.3.

5.2 VPP Timing
The asynchronous execution of the VPP servers occurred at different times and at different rates 
depicted in Figure 30. The long and short-term forecasting ran regularly (with specified sleep 
cycles) to update the DER forecasts for use with the bid and dispatch servers. The bid server ran 
once a day around 4:00 to issue the offer to the ISO/RTO at 5:00 or 6:00 PM as required for the 
given market. DER optimization (e.g., the dispatch server) ran during the day of service (day N) 
and the control server ran continuously to meet the bid server (and VPP) market requirements.  
The cyber server operated continuously to update the trustworthiness metric of the DER assets 
and inform bid and dispatch server if certain DER equipment should not be included in the 
optimization. 



77

Figure 30: Example two-day operation of the VPP when bidding into the contingency 
reserve market.  In the case of co-optimization, the energy market demand is met through 

the 24-hour period of the ‘Day of Services’.

5.3 Visualization
Real-time visualization of individual DER and total VPP statuses is necessary for debugging 
purposes and for grid operators to gain confidence in the system. Kibana takes data from 
Elasticsearch and graphs it through a web interface, allowing easy exploration of the data and 
exploring past logged data.

The “metric display” shows, for each DER in the system, the nameplate capacity, the current 
output (smoothed over the last few seconds), and the percentage of nameplate capacity currently 
being produced, as seen in Figure 31.  This is the most precise readout in the system, giving the 
operators accurate information about the state of the DERs.
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Figure 31: Kibana metric display screenshot.

Another useful display is the stacked power graph shown in Figure 32.  This graph stacks the 
power from the DERs on top of each other, allowing a quick visual display of how much of the 
current output power each DER is producing (as well as the total system power).  This view 
works acceptably if all DERs are exporting power, but the stacked graph concept (as 
implemented by Kibana) is not well suited to displaying data from battery systems, as they can 
be charging as well as discharging.  This graph type does not work well for this type of data.
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Figure 32: Kibana stacked power screenshot.

To improve the performance of data export (and reduce any impact on simulation performance), 
a separate process was created for data export.  For each step of the control loop, data was 
exported into the export process (including the state of all the DERs).  The export process caches 
this data for several seconds, and uses the Elasticsearch Bulk Import API to rapidly push all data 
into the datastore.  This is significantly faster than exporting each data point individually, and 
can be done without slowing the simulation execution.

Other charts showed the total VPP output power as compared to the target power (Figure 33), 
DER power production (Figure 34), and the percent error in the output power.  Unfortunately, 
the team discovered partway through the visualization system design that Kibana is not well 
suited to displaying this sort of data.  Kibana is designed to aggregate data over automatically 
determined periods of time, and cannot be coerced into displaying every data point across a 
reasonably large time scale.  Showing every data point is useful for analysis work (looking for 
short duration oscillations and similar misbehavior), and the aggregated data can hide this type of 
behavior.  Kibana is a great tool, but it is likely not the right visualization front end for a project 
of this nature.  Elasticsearch, however, works well as a data back end, and can easily scale to a 
cluster size for large data collection and long term storage/analysis.
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Figure 33: VPP target vs power output.

Figure 34: Average DER power output for each time step.
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6 VPP SYSTEM OPERATIONAL RESULTS

Only limited operational runs were completed with the entire Energy and Reserve Market VPP 
system due to funding limitations. When the entire VPP operated, the long and short-term 
forecasts were gathered; the day-ahead optimization was completed and successfully stored; and 
the dispatch and control server executed simultaneously while feeding data to the export server. 

Physical DER devices were also connected as part of the VPP aggregation, but communication 
latencies prevented the VPP from reaching the VPP setpoint because the PID control was not 
tuned for a system with those delays. It is believed a communication server that could issue 
commanded to multiple DER simultaneously could remediate those issues. 

6.1 VPP Control with Simulated DERs
The VPP was run with the tuned control settings, 0.2 second communication rate and no network 
delay for the scenario shown in Table 5 on page 54. The output of the VPP and the DER devices 
is shown in Figure 35. 

Figure 35. VPP and DER outputs for a commitment scenario. 

The operation of the VPP ran for, at most, one hour before programming or integration problems 
caused one of the servers to crash.  In the case of the VPP simulations, the control server 
succeeded in gathering three different optimal DER dispatch setpoints for the simulated DER.  
For that run, the weather was fair, so the VPP targets were within 20 W of each other and there 
was limited change in the output of the DER devices. Next, the commitment and optimization 
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engines were run to determine the energy and reserve bids and DER setpoints for a day in June 
2017 based on live forecasts of the DER assets. Data from the controller was captured for 40 
seconds with the reserve called at t = 20 s.  The response of the VPP is shown in Figure 36.

Figure 36. VPP and DER outputs based on commitment and optimization targets at a time 
when the reserve is requested.

6.2 VPP Control with Real DERs
To validate the VPP control with a real communication network, three PV inverters in DETL 
were issued curtailment commands from the VPP dispatch controller via SunSpec Alliance 
Modbus TCP commands. The DER output power was sequentially read and the level of active 
power curtailment of the DER equipment was adjusted. An example of the PV controls reaching 
a specified power level is shown in Figure 37. In cases where there was insufficient PV power 
available, the active power level was not meet, as shown in Figure 38. 
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Figure 37. Response of three inverters to a target power signal. 

Figure 38. Response of three inverters to a target power signal, where the power level is 
above the available power of the renewable source. 

Using simulated DER, the control loop was configured to execute in 0.01 seconds, but when 
adding the physical devices the loop time increased and the duration became variable. As shown 
in Figure 39, the read times for the DER was consistently ~200 ms for the inverters, but the write 
times varied between ~50 and ~1200 ms and the tuned VPP controls were no longer effective. To 
have stable control, the loop time must be consistent, so the variability forced VPP operator to 
execute the control loop at the largest duration, i.e., 2 seconds. This control speed produced poor 
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VPP system performance. One option to improve the VPP response would be to issue set points 
via parallelized communications, as opposed to sequentially.  This would also allow the VPP to 
scale as more DER resources are added to the pool. 

Figure 39. Inverter read and write rates for three physical DERs.

In summary, the centralized feedback control architecture for virtual power plants was operated 
effectively with simulated devices but, in the case of using physical devices to provide grid 
services, significant communication latencies prevented real-time operations. In the future, it is 
recommended to use communication dispatchers, multi-threading or multicast communications 
to control VPPs to avoid communications-related scaling issues. 
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7 CONCLUSIONS

In the future, ubiquitous distributed energy resources will be controlled in aggregate to provide 
grid services that have been traditionally reserved for large thermal generators or other dedicated 
equipment.  These virtual power plants will be cost competitive with thermal generators and, as 
the nation moves toward a 100% renewable energy future, mandatory to maintain grid operations 
and resilience. 

Multiple virtual power plants were designed to provide several grid services. The VPPs all 
consisted of DER power forecasting, optimization, and control through a communication 
network. The Energy and Reserve Market VPP was programmed as a multiprocessing software 
program at the Distributed Energy Technologies Laboratory at Sandia National Labs and 
operated under several scenarios. A stochastic optimization generated market bids based on 
renewable power forecasts; the VPP then met grid operator demands with an optimal DER 
dispatch mechanism, centralized controller, and communication network. Ultimately, limited 
VPP simulations were conducted with the entire system, but initial results were promising.  The 
VPP was capable of quickly and accurately reaching target power levels with a diverse and 
nonhomogeneous collection of DER devices. Additional research should be conducted with each 
of the VPP components but, more importantly, in the integration of these elements into a fault-
tolerant, monolithic software platform that quickly communicates with DER equipment. 

The principal science and engineering contributions were in the areas of (a) creating a stochastic 
co-optimization methodology which enabled the VPP to participate in multiple day-ahead 
markets with high confidence of meeting the offers; (b) creating a cascading centralized 
controller with a swing DER to meet the real-time objective of the VPP, (c) providing voltage 
regulation using a distribution state estimation system and optimal power flow solver, and (d) 
establishing new cyber security intrusion detection systems based on power system state. 

Finally, VPPs face many technical and regulatory challenges which may prevent market 
adoption. This project showed how many of the technical hurdles were surmountable with the 
right science and engineering approaches. Building this system provided evidence that VPPs are 
fully plausible in the near-term and a review of regulations that prevent VPPs from participating 
in ISO/RTO markets is warranted.  
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APPENDIX A: VPP SUBRESOURCE MODELS

A.1   Storage Model

The operating constraints for a given storage technology is defined as:
 𝑒𝜔,𝑡,𝑠 = 𝜇𝑠𝑒𝜔,𝑡 ‒ 1,𝑠 + 𝜂𝑐
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𝜔,𝑡,𝑠 ‒ 𝑝 𝑑
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𝑠 Energy Storage Level (1)

𝐸𝑠 ≤ 𝑒𝜔,𝑡,𝑠 ≤ 𝐸𝑠 Energy Storage Capacity Limits (2)
𝑝𝜔,𝑡,𝑠 = 𝑝 𝑑

𝜔,𝑡,𝑠 ‒ 𝑝 𝑐
𝜔,𝑡,𝑠 Net Power Injection/Withdrawal (3)
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𝑠𝑏 𝑐
𝜔, 𝑡, 𝑠 Charge Power Rating (4)
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�̅� 𝑠

𝜔,𝑡,𝑠 = 𝑝 𝑐
𝜔,𝑡,𝑠 + [𝑃𝐷

𝑠(1 ‒ 𝑏 𝑐
𝜔, 𝑡, 𝑠) ‒ 𝑝 𝑑

𝜔,𝑡,𝑠] Reserve Capacity Availability (8)
𝑓𝑠(𝑝𝜔,𝑡,𝑠,�̅� 𝑠

𝜔,𝑡,𝑠) = 𝑓𝑒
𝑠(𝑝𝜔,𝑡,𝑠) + (𝜆𝐷𝐴

𝜔,𝑡 ‒ 𝐶1
𝑠)�̅� 𝑠

𝜔,𝑡,𝑠 Energy + Reserve Opportunity Cost (9)
(𝑓𝑒

𝑠 𝑝𝜔,𝑡,𝑢 + 𝑟𝜔,𝑡,𝑠) = 𝐶1
𝑠(𝑝𝜔,𝑡,𝑠 + 𝑟𝜔,𝑡,𝑠) Energy Cost (10)

for all  where the storage devices are a subset of the VPP subresources (DERs), 𝜔 ∈ Ω,𝑡 ∈ 𝑇,𝑠 ∈ 𝑆,
i.e., . 𝑆 ⊆ 𝑈

Equation (1) defines the total energy stored in the storage unit for time  in scenario  and 𝑠 𝑡 𝜔

incorporates a self-discharge rate  on the storage level as well as charging and 𝜇𝑠 ∈ (0,1]

discharging efficiencies,   and , respectively. In (1) when , then  is 𝜂𝑐
𝑠 ∈ (0,1] 𝜂𝑑

𝑠 ∈ (0,1] 𝑡 = 1 𝑒𝜔,𝑡 ‒ 1,𝑠

equal to the energy storage level in the previous operating period. Constraint (2) limits the 
energy storage capacity based on a minimum and maximum energy level,  and , that can be 𝐸𝑠 𝐸𝑠

specified with state-of-charge characteristics. Constraint (3) calculate the net power from the 
storage device, and then constraints (4) and (5) characterize the charge and discharge power 
ratings where  is a binary variable that specifies whether the storage device is in charge (𝑏 𝑐

𝜔, 𝑡, 𝑠

) or discharge ( ) mode. Constraint (6) represents the limit on the rate to charging 𝑏 𝑐
𝜔, 𝑡, 𝑠 = 1 𝑏 𝑐

𝜔, 𝑡, 𝑠 = 0

in addition to providing reserve without physical violations, and constraint (7) represents the 
limit on the rate to discharging. Constraint (8) specifies that the unit’s reserve is equal to the 
amount of energy that is being charged plus any unused capacity to discharge; note that only one 
of these terms can be nonzero. Equation (9) represents the cost function used in the day-ahead 
VPP scheduling optimization, and equation (10) represents the cost function that is used in the 
real-time VPP dispatch optimization.

A.2   Solar Photovoltaic Model

The operating constraints for a solar photovoltaic resource is defined as:
 𝑝𝜔,𝑡,𝑖 = 𝑃𝑖𝑏𝜔,𝑡,𝑖 + 𝑝 Δ

𝜔,𝑡,𝑖 Power Output (11)
 𝑝 Δ

𝜔,𝑡,𝑖 + �̅� 𝑠
𝜔,𝑡,𝑖 ≤ (𝑃 𝐹

𝜔,𝑡,𝑖 ‒ 𝑃𝑖)𝑏𝜔,𝑡,𝑖 Power + Reserve Limit (12)
𝑓𝑖(𝑝𝜔,𝑡,𝑖,�̅�

𝑠
𝜔,𝑡,𝑖) = 𝑓𝑒

𝑖(𝑝𝜔,𝑡,𝑖) + (𝜆𝐷𝐴
𝜔,𝑡 ‒ 𝐶1

𝑖)�̅� 𝑠
𝜔,𝑡,𝑖 Energy + Reserve Opportunity Cost (13)

(𝑓𝑒
𝑖 𝑝𝜔,𝑡,𝑖 + 𝑟𝜔,𝑡,𝑖) = 𝐶1

𝑖(𝑝𝜔,𝑡,𝑖 + 𝑟𝜔,𝑡,𝑖) Energy Cost (14)
for all  where the solar pv devices are a subset of the VPP subresources, i.e., . 𝜔 ∈ Ω,𝑡 ∈ 𝑇,𝑖 ∈ 𝐼, 𝐼 ⊆ 𝑈
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Equation (11) represents the power output as a function of its minimum operating level (MOL), 
, where  is a binary variable that specifies whether the solar PV device is at or above the 𝑃𝑖 𝑏𝜔,𝑡,𝑖

MOL to generate a usable power output. Then constraint (12) limits the generation over the 
MOL and the reserves, where  is unit ’s forecasted output rating for the given scenario  in 𝑃 𝐹

𝜔,𝑡,𝑖 𝑖 𝜔

time . A positive reserve capacity, , denotes that the solar PV device may incur spillage 𝑡 �̅� 𝑠
𝜔,𝑡,𝑖

during operations. Equation (13) represents the cost function used in the day-ahead VPP 
scheduling optimization, and equation (14) represents the cost function that is used in the real-
time VPP dispatch optimization.

A.3   Thermal Generation Model

The operating constraints for the thermal generation model113 is defined as:

 𝑏𝑡,𝑔 ‒ 𝑏𝑡 ‒ 1,𝑔 = 𝑏𝑠𝑢
𝑡,𝑔 ‒ 𝑏𝑠𝑑

𝑡,𝑔 Start-up/Shut-down State (15)
𝑝𝜔,𝑡,𝑔 = 𝑃𝑔𝑏𝑡,𝑔 + 𝑝 Δ

𝜔,𝑡,𝑔 Power Output (16)
𝑝 Δ

𝜔,𝑡,𝑔 + �̅� 𝑠
𝜔,𝑡,𝑔 ≤ (𝑃𝑔 ‒ 𝑃𝑔)𝑏𝑡,𝑔

           ‒ (𝑃𝑔 ‒ 𝐶𝑈
𝑔)𝑏𝑠𝑢

𝑡,𝑔 ‒ (𝑃𝑔 ‒ 𝐶𝐷
𝑔)𝑏 𝑠𝑑

𝑡 + 1,𝑔

Power + Reserve Limit (17)

𝑝 Δ
𝜔,𝑡,𝑔 + �̅� 𝑠

𝜔,𝑡,𝑔 ‒ 𝑝 Δ
𝜔,𝑡 ‒ 1,𝑔 ≤ 𝑅𝑅𝑔 Ramp-up Limit (18)

‒ 𝑝 Δ
𝜔,𝑡,𝑔 + 𝑝 Δ

𝜔,𝑡 ‒ 1,𝑔 ≤ 𝑅𝑅𝑔 Ramp-down Limit (19)
∑

𝑓 ∈ 𝐹𝑔

𝐾 𝑈
𝑔,𝑓𝑏 0

𝑡,𝑔,𝑓 ≤ 𝑐𝑠𝑢
𝑡,𝑔

Start-up Cost (20)

𝑏 0
𝑡,𝑔,𝑓 ≤

𝑇 𝐿
𝑔,𝑓 + 1 ‒ 1

∑
𝑡' = 𝑇 𝐿

𝑔,𝑓

𝑏 𝑠𝑑
𝑡 ‒ 𝑡',𝑔

Start-up Type (21)

∑
𝑓 ∈ 𝐹𝑔

𝑏 0
𝑡,𝑔,𝑓 = 𝑏𝑠𝑢

𝑡,𝑔
Start-up Limit (22)

𝑡

∑
𝑡' = 𝑡 ‒ 𝑇𝑈

𝑔 + 1

𝑏 𝑠𝑢
𝑡',𝑔 ≤ 𝑏𝑡,𝑔

(23)

𝑡

∑
𝑡' = 𝑡 ‒ 𝑇𝐷

𝑔 + 1

𝑏 𝑠𝑑
𝑡',𝑔 ≤ 1 ‒ 𝑏𝑡,𝑔

(24)

𝑏𝑡 ‒ 1,𝑔 = 𝐵0
𝑔 (25)

𝑓𝑔(𝑝𝜔,𝑡,𝑔,�̅� 𝑠
𝜔,𝑡,𝑔) = ∑

𝑡 ∈ 𝑇 

𝑐𝑠𝑢
𝑡,𝑔 + 𝑓𝑒

𝑔(𝑝𝜔,𝑡,𝑔)

                            + (𝜆𝐷𝐴
𝜔,𝑡 ‒ 𝐶1

𝑔)�̅� 𝑠
𝜔,𝑡,𝑔 ‒ 𝐶2

𝑔(�̅� 𝑠
𝜔,𝑡,𝑔)2

Energy + Reserve Opportunity Cost (26)

(𝑓𝑒
𝑔 𝑝𝜔,𝑡,𝑔 + 𝑟𝜔,𝑡,𝑔) = 𝐶2

𝑔(𝑝𝜔,𝑡,𝑔 + 𝑟𝜔,𝑡,𝑔)2

                            + 𝐶1
𝑖(𝑝𝜔,𝑡,𝑔 + 𝑟𝜔,𝑡,𝑔) + 𝐶0

𝑔𝑏𝑡,𝑔

Energy Cost (27)

113 G. Morales-Espana, J.M. Latorre, and A. Ramos. “Tight and compact MILP formulation for the thermal unit 
commitment problem.” IEEE Transactions on Power Systems, (28)4, 4897-4908, 2013.
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for all  in (15), (20), and (22); for all  in (16)-(19), (26), and (27); for all 𝑡 ∈ 𝑇,𝑔 ∈ 𝐺 𝜔 ∈ Ω,𝑡 ∈ 𝑇,𝑔 ∈ 𝐺

 in (21); for all  in (23); for all  in (24); 
𝑡 ∈ {𝑇 𝐿

𝑡' + 1,𝑔
,…,𝑇},𝑔 ∈ 𝐺,𝑓 ∈ 𝐹𝑔 𝑡 ∈ {𝑇𝑈

𝑔,…,𝑇},𝑔 ∈ 𝐺 𝑡 ∈ {𝑇𝐷
𝑔,…,𝑇},𝑔 ∈ 𝐺

and for all  in (25) where  and 𝑡 ∈ {1,…,𝑇𝐷0
𝑔 + 𝑇𝑈0

𝑔 },𝑔 ∈ 𝐺 𝑇𝐷0
𝑔 = 𝑚𝑎𝑥{0,(𝑇𝐷

𝑔 ‒ 𝑇𝐷'
𝑔 )(1 ‒ 𝐵0

𝑔)}

 for the minimum downtime, , the initial periods offline prior to the 𝑇𝑈0
𝑔 = 𝑚𝑎𝑥{0,(𝑇𝑈

𝑔 ‒ 𝑇𝑈'
𝑔 )𝐵0

𝑔} 𝑇𝐷
𝑔

scheduling horizon, , the minimum uptime, , and the initial periods online prior to the 𝑇𝐷'
𝑔 𝑇𝑈

𝑔

scheduling horizon, . The thermal generators are a subset of the VPP subresources, i.e., . 𝑇𝑈'
𝑔 𝐺 ⊆ 𝑈

The binary constraint in (15) enforces that the binary variables  and  take on the 𝑏𝑠𝑢
𝑡,𝑔 𝑏𝑠𝑑

𝑡,𝑔

appropriate values when a unit starts up or shuts down, respectively. 

The active power dispatch operations for a thermal generating unit is characterized in constraints 
(16)-(19). Constraint (16) represents the total unit production, , as the aggregate of the 𝑝𝜔,𝑡,𝑔

minimum operating level (MOL), , and the generation over that minimum, , where  is a 𝑃𝑔 𝑝 Δ
𝜔,𝑡,𝑔 𝑏𝑡,𝑔

binary variable that specifies whether the unit  is on or off in time period .  Constraint (17) is 𝑔 𝑡

the upper bound limit on the generation over the MOL along with the reserves, . The ramp-�̅� 𝑠
𝜔,𝑡,𝑔

up constraint in (18) ensures that the unit can provide reserve without violating the upwards 
ramp limit, and the ramp-down constraint is specified in (19).

The scheduling limits for a thermal generating unit is characterized in constraints (20)-(25). The 
start-up cost is calculated in (20). The binary variable  associates the corresponding start-up 𝑏 0

𝑡,𝑔,𝑓

cost  for a given start-up type, denoted by increasing start-up timeframes in , to the 𝐾 𝑈
𝑔,𝑓 𝑓 ∈ 𝐹𝑔

amount of time elapsed since the last time period that unit was online in (21) and (22). The 
minimum uptime and downtime constraints are denoted in (23) and (24), respectively. The initial 
up/down time constraint is enforced in (25). 

Equation (26) represents the cost function used in the day-ahead VPP scheduling optimization, 
and equation (27) represents the cost function that is used in the real-time VPP dispatch 
optimization. 
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